Biodegradable microspheres containing a colchicine analogue inhibit DNA synthesis in vascular smooth muscle cells.

Author:

March K L1,Mohanraj S1,Ho P P1,Wilensky R L1,Hathaway D R1

Affiliation:

1. Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis 46202-4800.

Abstract

BACKGROUND Smooth muscle cell proliferation plays a major role in the genesis of restenosis after angioplasty or vascular injury. Local application of agents capable of modulating vascular responses, including smooth muscle cell proliferation, has been achieved, but difficulty in maintaining active levels locally has been a factor limiting the efficacy of such approaches. One strategy to maintain adequate levels is the local delivery of microspheres that release active agents over sustained time periods. METHODS AND RESULTS We incorporated a colchicine analogue into biodegradable microspheres composed of a lactic acid/glycolic acid copolymer and characterized their drug release behavior as well as their effects on bovine aortic smooth muscle cells (BASMCs) in culture. Drug release was evaluated by spectrophotometric assay. Drug effects on DNA synthesis were measured by thymidine incorporation after addition of serum to subconfluent cells synchronized by serum withdrawal as well as in asynchronous cell populations. Polymeric microspheres incorporating 10% to 17% drug by weight and averaging 6 microns in size were found to release the colchicine analog in buffered saline solutions over more than several weeks. Drug-loaded particles inhibited DNA synthesis completely, with EC50 values ranging from 0.001 to 0.005 g% (wt/wt). Morphological changes suggesting microtubule depolymerization were observed after drug particle treatment, with similar EC50 values. Microspheres allowed to contact the cell surface demonstrated effects similar to those seen with microspheres suspended in the nutrient medium by porous polycarbonate filters, at EC50 values approximately fivefold lower. In contrast, control microspheres composed only of polymer with no incorporated active drug demonstrated no observable toxicity to BASMCs and < 40% inhibition of thymidine incorporation even in suspensions containing up to 0.5 g% particles. CONCLUSIONS Biodegradable microspheres were fashioned that release a colchicine analogue and inhibit DNA synthesis in smooth muscle cells. Drug-loaded polymeric particles are candidates for local delivery at sites of arterial injury to decrease restenosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3