Magnetic resonance imaging of chronic myocardial infarcts in formalin-fixed human autopsy hearts.

Author:

Hsu J C1,Johnson G A1,Smith W M1,Reimer K A1,Ideker R E1

Affiliation:

1. Department of Pathology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710.

Abstract

BACKGROUND In post-myocardial infarction patients, three-dimensional structure of the infarct as well as infarct size are likely to be important factors affecting mortality, cardiac function, and arrhythmias. Current morphological methods for determining three-dimensional infarct structure in autopsied hearts are inexact and time consuming. The cardiac magnetic resonance imaging techniques used in living patients have shown potential in determining infarct size and structure but have limited resolution for morphometric postmortem studies. The recent development of magnetic resonance microscopy raises the possibility that three-dimensional infarct structure can be quantified at microscopic levels in autopsied hearts. The purpose of this study was to determine the ability of magnetic resonance imaging at different spatial resolutions to differentiate infarcted from noninfarcted myocardium. METHODS AND RESULTS Magnetic resonance imaging was performed at 2.0 T on cross sections taken from 10 autopsied hearts containing old myocardial infarcts. T1 was derived from six images with repetition times (TRs) for each image ranging from 100 to 3200 milliseconds. T2 was derived from multi-echo images with echo times (TEs) ranging from 10 to 60 milliseconds. Resolution was approximately 400 x 400 microns in 2-mm-thick slices. Sites of infarcted and noninfarcted tissue were identified from histological sections taken from each slice, and the T1 and T2 values of these sites were obtained. Microscopic images were acquired with voxels of 100 x 100 x 625 microns, representing tissue volumes more than 1000-fold smaller than conventional clinical images. In all cases, T1 of infarcted tissue (459 +/- 266 milliseconds, mean +/- SD) was greater than that of noninfarcted tissue (272 +/- 163 milliseconds). Also, in all cases, T2 of infarcted tissue (49 +/- 14 milliseconds) was greater than that of noninfarcted tissue (35 +/- 8 milliseconds). CONCLUSIONS T1 and T2 values for infarcted tissue are significantly different from those of noninfarcted tissue (P < .001). Based on these findings, it should be possible to develop techniques to perform three-dimensional imaging and quantitation of infarcts with a resolution of 400 microns or less. When volumetric three-dimensional imaging was performed using a T1-weighted sequence, the resulting 256(3) arrays supported isotropic resolution at 400 microns (voxel volume, 0.064 mm3). Subsequent volume rendering using a compositing algorithm clearly shows the infarcted areas in three dimensions. The techniques demonstrate the potential for quantitative three-dimensional cardiac morphometry using magnetic resonance imaging.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3