Use-dependent block of the pacemaker current I(f) in rabbit sinoatrial node cells by zatebradine (UL-FS 49). On the mode of action of sinus node inhibitors.

Author:

Goethals M1,Raes A1,van Bogaert P P1

Affiliation:

1. Department of Cardiology, University Hospital Antwerp, Belgium.

Abstract

BACKGROUND Zatebradine (UL-FS 49) is a drug with a specific bradycardiac electrophysiological profile. It reduces heart rate by lengthening the duration of diastolic depolarization in the sinoatrial (SA) node. The ionic basis of this action, however, is not clarified. METHODS AND RESULTS We used the whole-cell patch-clamp technique to study the effects of zatebradine on ionic currents underlying diastolic depolarization of isolated rabbit SA node cells. Low concentrations of zatebradine simultaneously reduced diastolic depolarization rate and the pacemaker current I(f). The drug blocked the pacemaker current, I(f), in a use-dependent manner without causing a shift of its activation curve. At hyperpolarized potentials, unblock of I(f) occurred. Clinically relevant concentrations of the drug have little effect on the L-type calcium current or delayed rectifier potassium current. CONCLUSIONS This use-dependent block of the If channel can account for most of the pharmacological characteristics of zatebradine and is probably the mechanism of heart rate reduction caused by this agent. Thus, the sinus node inhibitor zatebradine belongs to a new class of "I(f) blockers" with possible advantages over currently available drugs for the treatment of ischemic heart disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference72 articles.

1. Guth BD Seitelberger R Lee JD Katayama K Miller M Ross J Jr. Mechanism of increased ischemia during exercise: deleterious effect without drug-induced bradycardia. JAm Coll Cardiol. 1986; 7:54A. Abstract.

2. How does adrenaline accelerate the heart?

3. Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node.

4. The cardiac hyperpolarizing-activated current, if. origins and developments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3