High resolution mapping of Koch's triangle using sixty electrodes in humans with atrioventricular junctional (AV nodal) reentrant tachycardia.

Author:

McGuire M A1,Bourke J P1,Robotin M C1,Johnson D C1,Meldrum-Hanna W1,Nunn G R1,Uther J B1,Ross D L1

Affiliation:

1. Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia.

Abstract

BACKGROUND Recent evidence suggests that atrioventricular junctional reentrant tachycardia (AVJRT) uses a reentrant circuit that involves the atrioventricular (AV) node, the atrionodal connections, and perinodal atrial tissue. Electrogram morphology has been used to target the delivery of radiofrequency energy to the site of the "slow pathway," a component of this reentrant circuit. The aim of this study was to localize precisely the sites of atrionodal connections involved in AVJRT and to examine atrial electrogram morphologies and their spatial distribution over Koch's triangle. METHODS AND RESULTS Electrical activation of Koch's triangle and the proximal coronary sinus was examined in 13 patients using a 60-point plaque electrode and computerized mapping system. Recordings were made during sinus rhythm (n = 12), left atrial pacing (n = 8), ventricular pacing (n = 12), and AVJRT (n = 12). During sinus rhythm electrical activation approached Koch's triangle and the AV node from the direction of the anterior limbus, activating the anterior part of the triangle before the posterior part. A zone of slow conduction during sinus rhythm was found within Koch's triangle in 64% of patients. The pattern of atrial activation in Koch's triangle during anterograde fast pathway conduction was similar to that seen during anterograde slow pathway conduction. Retrograde fast pathway conduction during ventricular pacing and during anterior (typical) AVJRT caused earliest atrial activation at the apex of Koch's triangle near the AV node-His bundle junction. In individual patients the site of earliest atrial activation was similar for both anterior AVJRT and retrograde fast pathway conduction during ventricular pacing. Retrograde slow pathway conduction during ventricular pacing and during posterior (uncommon or atypical) AVJRT caused earliest atrial activation posterior to the AV node near the orifice of the coronary sinus. This posterior or "slow pathway" exit site was 15 +/- 4 mm from the His bundle. In individual patients the site of earliest atrial activation was similar for both posterior AVJRT and retrograde slow pathway conduction during ventricular pacing. In one patient anterograde and retrograde conduction occurred via separate slow pathways during AVJRT: Complex atrial electrograms with two or more components were observed near the coronary sinus orifice and in the posterior part of Koch's triangle in all cases. These were categorized as either low or high frequency potentials according to the rapidity of the second component of the electrogram. Low frequency potentials were present at the site of earliest atrial excitation during retrograde slow pathway conduction in 5 of 5 cases (100%) and high frequency potentials in 4 of 5 cases (80%). However, both slow and high frequency potentials could be found at sites up to 16 mm from the site of earliest atrial excitation. CONCLUSIONS At least two distinct groups of atrionodal connections exist. The site of earliest atrial activation during anterior AVJRT is similar to that of fast pathway conduction during ventricular pacing. This site is close to the His bundle-AV node junction. The site of earliest atrial activation during posterior AVJRT is similar to that of slow pathway conduction during ventricular pacing. This site is near the coronary sinus orifice, approximately 15 mm from the His bundle. The anterograde slow pathway appears to be different from the retrograde slow pathway in some patients. Double atrial electrograms are an imprecise guide to the site of earliest atrial excitation during retrograde slow pathway conduction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3