Mechanisms of reoxygenation injury in cultured ventricular myocytes.

Author:

Quaife R A1,Kohmoto O1,Barry W H1

Affiliation:

1. Cardiology Division, University of Utah Medical Center, Salt Lake City, Salt Lake City 84132.

Abstract

To investigate factors contributing to reperfusion and reoxygenation myocardial injury, we exposed layers of cultured chick ventricular myocytes to severe hypoxia for up to 3 hours in the presence of 20 mM 2-deoxyglucose, zero glucose, and 5 mM pyruvate, and then exposed the myocytes to reoxygenation. Lactate dehydrogenase (LDH) release was moderately increased during 3 hours of hypoxia but was increased markedly during reoxygenation. Coincident changes in intracellular calcium concentration ([Ca2+]i) and cell motion were also measured during hypoxia and reoxygenation. During hypoxia, [Ca2+]i increased to more than 1 microM, and with reoxygenation, [Ca2+]i abruptly decreased slightly but remained elevated more than 1 microM. Cells developed a stable rigor after 30 minutes of hypoxia. Reoxygenation caused a marked hypercontracture within 5 minutes. Pretreatment of myocytes with either 2,3-butanedione monoxime, which inhibits Ca2(+)-dependent force development, or cyanide inhibited reoxygenation hypercontracture. LDH release after reoxygenation was also significantly reduced in the presence of 2,3-butanedione monoxime. Treatment of myocytes with superoxide dismutase and catalase during hypoxia also resulted in a decrease in LDH release during reoxygenation. We conclude that an abrupt increase in [Ca2+]i during reoxygenation does not account for reoxygenation injury. However, in the presence of elevated [Ca2+]i, reoxygenation and the resulting probable resynthesis of ATP causes [Ca2+]i-dependent myofilament crossbridge cycling, and the resulting hypercontracture contributes to myocyte damage. The generation of oxygen free radicals after reoxygenation also appears to contribute to cell injury in this system.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference42 articles.

1. Reimer KA Jennings RB: Myocardial ischemia hypoxia and infarction in Fozzard HA (ed): The Heart and Cardiovascular System. New York Raven Press Publishers 1986 pp 1133-1201

2. The oxygen paradox and the calcium paradox: Two facets of the same problem?

3. Effects of ischaemia and reperfusion on calcium exchange and mechanical function in isolated rabbit myocardium

4. Oxygen-induced enzyme release: Early events and a proposed mechanism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3