Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization.

Author:

Young A A1,Imai H1,Chang C N1,Axel L1

Affiliation:

1. Department of Radiology, Hospital of the University of Pennsylvania, Pa.

Abstract

BACKGROUND Myocardial tissue tagging with the use of magnetic resonance imaging allows noninvasive regional analysis of heart wall motion and deformation. However, any evaluation of the effect of disease or treatment requires a baseline reference of normal values and variation. We studied the two-dimensional motion of material points imaged within the left ventricular wall using spatial modulation of magnetization (SPAMM) in 12 normal human volunteers. METHODS AND RESULTS Five parallel short-axis and five parallel long-axis slices were acquired at five times during systole. SPAMM tags were generated at end diastole using a 7-mm grid. Intersection point data were analyzed for displacement, rotation, and torsion, and triangles of points were analyzed for local rotation and principal strains. Short-axis displacement was the least in the septum for all longitudinal levels (P < .001). Torsion about the long axis was uniform circumferentially because of the motion of the centroids used to reference the rotation. In the long-axis images, the base displaced longitudinally toward the apex, with the posterior wall moving farther than the anterior wall (13.4 +/- 2.2 versus 9.7 +/- 1.8 mm, P < .001) in this direction. The largest principal strain (maximum lengthening) was approximately radially oriented in both views. In the short-axis images, the minimum principal strain (maximum shortening) increased in magnitude toward the apex (P < .001) with little circumferential variation, except at midventricle, where the anterior wall showed greater contraction than the posterior wall (-0.21 +/- 0.03 versus -0.19 +/- 0.02, P < .02). CONCLUSIONS Consistent regional variations in deformation are seen in the normal human heart. Displacement and maximum shortening strains are well characterized with two-dimensional magnetic resonance tagging; however, higher-resolution images will be required to study transmural variations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3