Internal cardioversion of atrial fibrillation in sheep.

Author:

Cooper R A1,Alferness C A1,Smith W M1,Ideker R E1

Affiliation:

1. Department of Medicine, Duke University Medical Center, Durham, NC 27710.

Abstract

BACKGROUND The cardioversion efficacy of multiple defibrillation waveforms and electrode systems was compared in a sheep model of atrial fibrillation. METHODS AND RESULTS Sustained atrial fibrillation could be induced with rapid atrial pacing in 23 (55%) of the animals. This study was performed in four parts. Six sheep with sustained atrial fibrillation were used for data analysis for each part, except in part 4 where five sheep without sustained atrial fibrillation were used. In part 1, four lead systems and four single capacitor truncated exponential defibrillation waveforms (two monophasic and two biphasic) were tested. In part 2, two transvenous lead systems were compared; one was a right-to-left system with one electrode located in the right side of the heart and the other electrode located in the left side of the heart, and the other was a totally right-sided system with both electrodes located in the right side of the heart. Eight (four monophasic and four biphasic) waveforms were tested with each lead system. In part 3, eight transvenous lead systems were compared, and two waveforms (one monophasic and one biphasic) were tested with each lead system. For parts 1-3, probability of success curves were determined for each waveform/lead system configuration using an up-down technique with 15 shocks per configuration. In part 4, shocks were synchronized to the QRS and given through two lead configurations during sinus rhythm in 20-V steps starting with 40 and ending with 500 V, and two waveforms were tested with each lead system (one monophasic and one biphasic). Ventricular fibrillation thresholds were determined by giving shocks during the T wave of sinus rhythm. For part 1, the three lead systems that used only intravenous catheter electrodes had significantly lower defibrillation requirements than the catheter-to-chest wall patch system. A 3/3-msec biphasic waveform had significantly lower defibrillation requirements than any of the other three waveforms in part 1. In part 2, the 3/3-msec biphasic waveform with a right-to-left lead system configuration had significantly lower defibrillation requirements than any other waveform lead system combination tested, and for each waveform tested, the right-to-left configuration had significantly lower requirements than the totally right-sided configuration. In part 3, for each waveform the right-to-left configuration had significantly lower voltage and energy requirements than the corresponding totally right-sided configuration. Furthermore, in part 3, waveform/lead configurations that probably generated high potential gradients near the sinoatrial node and near the atrioventricular node resulted in more postshock conduction disturbances. In part 4, there were no episodes of ventricular arrhythmias with shocks synchronized to the QRS. However, with synchronization to the T wave, ventricular fibrillation was induced in all five animals with the minimum tested voltage, which was 40 V. CONCLUSIONS This acute model yielded sustained atrial fibrillation in approximately 55% of the animals. Cardioversion of atrial fibrillation in sheep is possible with very low energy requirements using transvenous electrode systems (50% successful energy of 1.3 +/- 0.4 J for the 3/3-msec biphasic waveform with a right-to-left lead system). The biphasic waveform had the lowest defibrillation requirements of any waveforms tested, and right-to-left lead systems resulted in lower defibrillation requirements than totally right-sided lead systems. Also, lead systems that probably generated high potential gradients near the sinoatrial and atrioventricular node areas resulted in more frequent episodes of postshock conduction disturbances. Furthermore, synchronization of the shock to the QRS was vital to avoid potentially lethal postshock ventricular arrhythmias...

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3