Three-dimensional echocardiography. In vivo validation for right ventricular volume and function.

Author:

Jiang L1,Siu S C1,Handschumacher M D1,Luis Guererro J1,Vazquez de Prada J A1,King M E1,Picard M H1,Weyman A E1,Levine R A1

Affiliation:

1. Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114.

Abstract

BACKGROUND Current two-dimensional echocardiographic measures of right ventricular volume are limited by the asymmetrical and crescentic shape of the ventricle and by difficulty in obtaining standardized views. Three-dimensional echocardiographic reconstruction, which does not require geometric assumptions or standardized views, may therefore have potential advantages for determining right ventricular volume. Three-dimensional techniques, however, have not been applied to the right ventricle in vivo, where cardiac motion and contraction could affect accuracy. The purpose of this study was to determine the feasibility and accuracy of three-dimensional echocardiographic reconstruction for quantifying right ventricular volume and function in vivo. In particular, it was designed to test the accuracy of a newly developed system that provides rapid, efficient, and automated three-dimensional data collection (minimizing motion effects) and takes advantage of the full three-dimensional data set to obtain volume. METHODS AND RESULTS The three-dimensional system was applied to reconstruct the right ventricle and measure its volume and function during 20 hemodynamic stages created in five dogs. Actual instantaneous volumes were measured continuously by an intracavitary balloon connected to an external column. Hemodynamics were varied by volume loading and induction of ischemia. Three-dimensional reconstruction successfully reproduced right ventricular volume compared with actual values at end diastole (y = 1.0 chi-3.4, r = .99, SEE = 1.8 mL) and end systole (y = 1.0 chi+ 2.0, 4 = .98, SEE = 2.5 mL). The mean difference between calculated and actual volumes throughout the cycle was 2.1 mL, or 4.9% of the mean. Ejection fraction also correlated well with actual values (y = 0.96 chi-0.3, r = .98, SEE = 3.3%). CONCLUSIONS Despite the irregular crescentic shape of the right ventricle, this newly developed three-dimensional system and surfacing algorithm can accurately reconstruct its shape and quantitate its volume and function in vivo without geometric assumptions. The increased efficiency of the system should increase applicability to issues of clinical and research interest.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Memoriam: Arthur E. Weyman, MD, FASE;Journal of the American Society of Echocardiography;2024-08

2. Comparison of Right Ventricular Function Between Three-Dimensional Transesophageal Echocardiography and Pulmonary Artery Catheter;Journal of Cardiothoracic and Vascular Anesthesia;2021-06

3. Functional Evaluation of the Heart;Transesophageal Echocardiography for Pediatric and Congenital Heart Disease;2021

4. Quantification of Biventricular Function and Morphology by Cardiac Magnetic Resonance Imaging in Mice with Pulmonary Artery Banding;Journal of Visualized Experiments;2020-05-13

5. Standard and Advanced Echocardiography;Myocarditis;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3