Electrophysiological effects of left ventricular hypertrophy. Effect of calcium and potassium channel blockade.

Author:

Kowey P R1,Friechling T D1,Sewter J1,Wu Y1,Sokil A1,Paul J1,Nocella J1

Affiliation:

1. Cardiovascular Research Laboratory, Medical College of Pennsylvania, Philadelphia.

Abstract

BACKGROUND To define the arrhythmogenic effects of left ventricular hypertrophy (LVH) in the intact heart, we carried out a detailed electrophysiological assessment in our previously validated feline aortic-banding model and then tested the effects of agents that blocked either the slow inward calcium or voltage-dependent potassium channel. METHODS AND RESULTS We measured intraventricular and interventricular conduction times, excitability thresholds, ventricular effective refractory periods, and monophasic action potential duration at several sites in cats with LVH as well as in concurrent control (sham-operated) cats. In addition, we assessed vulnerability to ventricular arrhythmia using direct measurement of ventricular fibrillation (VF) thresholds and by standard techniques of programmed stimulation. Despite finding no difference between LVH and sham-operated cats in mean values for several electrophysiological parameters, the former group was significantly more vulnerable to VF, with more spontaneous VF and lower VF thresholds. Compared with the sham controls, LVH cats also had a greater dispersion of effective refractory period (35 +/- 11 versus 12 +/- 4 msec, p less than 0.01) and monophasic action potential duration at 90% repolarization (69 +/- 25 versus 39 +/- 7 msec, p less than 0.02). Verapamil had no significant effect on these electrophysiological parameters, nor did it affect VF threshold. However, risotilide, an inhibitor of the voltage-dependent potassium channel, narrowed dispersion of the effective refractory period and monophasic action potential duration concomitant with a marked reduction in ventricular vulnerability. CONCLUSIONS LVH has a pronounced effect on dispersion of refractoriness and repolarization and renders the ventricle more vulnerable to fibrillation. Blockade of the voltage-dependent potassium channel, but not the slow inward calcium channel, narrows the dispersion of recovery of excitability and protects against VF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3