Affiliation:
1. From the Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa.
Abstract
Objective—
Early growth response gene (Egr)-1 is a key transcription factor involved in vascular pathophysiology. Its role in diabetic vascular complications, however, remains unclear. Because hyperinsulinemia and hyperglycemia are major risk factors leading to diabetic vascular complications, we examined the effect of insulin and glucose on Egr-1 expression in murine glomerular vascular endothelial cells.
Methods and Results—
Insulin or glucose, when added separately, increased
egr-1
mRNA levels and promoter activity, as well as Egr-1 protein levels in nuclear extracts. When insulin was added to cells preincubated with glucose, the two had an additive effect on Egr-1 expression. Furthermore, vascular endothelial growth factor receptor-1 (
flt-1
) and plasminogen activator inhibitor-1, two known Egr-1-responsive genes, were also upregulated in the presence of insulin or glucose. An investigation into the underlying molecular mechanisms demonstrated that insulin, but not glucose, increased Egr-1 expression through extracellular signal-regulated kinase 1/2 activation, which is consistent with our previous reports. In contrast, inhibition of protein kinase C by phorbol ester or by the specific protein kinase C inhibitor chelerythrine chloride downregulated glucose-induced, but not insulin-induced, Egr-1 expression.
Conclusions—
Differential regulation of Egr-1 expression by insulin and glucose in vascular cells may be one of the initial key events that plays a crucial role in the development of diabetic vascular complications.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献