Affiliation:
1. From the Departments of Medicine and Pathology (J.A.B.), David Geffen School of Medicine at University of California Los Angeles, Los Angeles, Calif.
Abstract
Objective—
Previous studies have demonstrated the importance of endothelial apical expression of connecting segment-1 (CS-1) fibronectin in mediating the entry of monocytes into atherosclerotic lesions and other sites of chronic inflammation. We previously demonstrated that oxidized PAPC (OxPAPC) increases monocyte-specific binding to arterial endothelium by causing deposition of CS-1 fibronectin on apical α
5
β
1
integrin. The present studies identify important signal transduction components regulating this pathway.
Methods and Results—
Using endothelial cells in culture, we demonstrate that activation of R-Ras is responsible for CS-1–mediated monocyte binding. Although few natural activators of R-Ras have been demonstrated, OxPAPC activated endothelial R-Ras by 2.5-fold but decreased levels of activated H-Ras. The importance of R-Ras/H-Ras balance in regulating monocyte binding was shown by overexpression studies. Constitutively active R-Ras enhanced monocyte adhesion, whereas coexpression with constitutively active H-Ras was inhibitory. Elevated cAMP, mediated by OxPAPC and specific components POVPC and PEIPC, was responsible for R-Ras activation, and dibutyryl cAMP and pertussis toxin were also effective activators of R-Ras. Using inhibitor and dominant-negative constructs, we demonstrated that phosphatidylinositol 3-kinase (PI3K) was a key downstream effector of R-Ras in this pathway.
Conclusions—
OxPAPC, POVPC, and PEIPC induce a cAMP/R-Ras/PI3K signaling pathway that contributes to monocyte/endothelial cell adhesion and potentially atherosclerosis.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献