Changes in Perlecan Expression During Vascular Injury

Author:

Kinsella Michael G.1,Tran Phan-Kiet1,Weiser-Evans Mary C.M.1,Reidy Michael1,Majack Richard A.1,Wight Thomas N.1

Affiliation:

1. From the Departments of Pathology (M.G.K., P.-K.T., M.R., T.N.W.), University of Washington, and the Hope Heart Institute (M.G.K., T.N.W.), Seattle, Wash, and the Departments of Pediatrics and Cell and Structural Biology (M.C.M.W.-E., R.A.M.), University of Colorado Health Sciences Center, Denver.

Abstract

Objective— Vascular smooth muscle cells (SMCs), activated by growth factors after arterial injury, migrate and proliferate to expand the intima of the blood vessel. During intimal expansion, proliferation is suppressed and an increasingly large proportion of the neointimal mass is composed of newly synthesized extracellular matrix (ECM). We sough to determine whether the ECM heparan sulfate proteoglycan (HSPG) perlecan, which inhibits SMC proliferation in vitro, also accumulates and limits SMC proliferation during neointimal expansion. Methods and Results— Perlecan expression and accumulation were analyzed by immunohistochemistry and in situ hybridization during neointima formation after balloon catheter injury to the rat carotid artery. Perlecan expression was low in uninjured vessels and up to 7 days after injury, during maximal SMC proliferation. By 14 days after injury, perlecan was dramatically increased, and immunostaining remained heavy throughout the advanced lesion, 35 to 42 days after injury. Finally, explants of intimal tissue from 35- to 42-day neointimal lesions were digested with glycosaminoglycanases to determine whether endogenous HSPGs inhibit intimal SMC proliferation. SMCs within HS-depleted, but not chondroitinase ABC–treated or mock-incubated, explants were found to proliferate in response to platelet-derived growth factor BB. Conclusions— HSPGs, such as perlecan, may inhibit the proliferative response of SMCs after vascular injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3