ACAT2 Is a Target for Treatment of Coronary Heart Disease Associated With Hypercholesterolemia

Author:

Rudel Lawrence L.1,Lee Richard G.1,Parini Paolo1

Affiliation:

1. From the Lipid Sciences Research Program (L.L.R., R.L.), the Departments of Pathology and Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC; and the Center for Metabolism and Endocrinology (P.P.), Department of Medicine, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden.

Abstract

The inhibition of intracellular cholesterol esterification as a means to prevent atherosclerosis has been considered to have potential for many years. Two different ACAT enzymes were discovered about 7 years ago, and it has become clear that the two enzymes provide separate physiologic functions. Much has been learned from mice with gene deletions for either ACAT1 or ACAT2. Deletion of ACAT2 has consistently been atheroprotective whereas deletion of ACAT1 has been varyingly problematic. ACAT1 functions in converting cellular cholesterol into cholesteryl ester in response to cholesterol abundance inside the cells. In atherosclerotic lesions, where macrophages ingest excess cholesterol, the ability to esterify the newly-acquired cholesterol seems important for cell survival. Inhibition of ACAT1 may bring undesired consequences with destabilization of cellular membrane function upon cholesterol accumulation leading to macrophage cell death. In contrast, ACAT2 is expressed only in hepatocytes and enterocytes, where ACAT1 is silent, and appears to provide cholesteryl esters for transport in lipoproteins. These two cell types have an abundance of additional mechanisms for disposing of cholesterol so that depletion of ACAT2 does not signal apoptosis. At the present time, the bulk of the available data suggest that the strategy seeming to bear the most potential for treatment of coronary heart disease associated with hypercholesterolemia would be to specifically inhibit ACAT2.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3