Novel Vascular Biology of Third-Generation L-Type Calcium Channel Antagonists

Author:

Mason R.P.1,Marche P.1,Hintze T.H.1

Affiliation:

1. From the Cardiovascular Division (R.P.M), Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass, and Elucida Research (R.P.M), Beverly, Mass; CNRS UMR 7131 and University Pierre and Marie Curie (P.M), Hôpital Broussais, Paris, France; and the Department of Physiology (T.H.H.), New York Medical College, Valhalla, NY.

Abstract

Calcium channel blockers (CCBs) were developed as vasodilators, and their use in cardiovascular disease treatment remains largely based on that mechanism of action. More recently, with the evolution of second- and third-generation CCBs, pleiotropic effects have been observed, and at least some of CCBs’ benefit is attributable to these mechanisms. Understanding these effects has contributed greatly to elucidating disease mechanisms and the rationale for CCB use. Furthermore, this knowledge might clarify why drugs are useful in some disease states, such as atherosclerosis, but not in others, such as heart failure. Although numerous drugs used in the treatment of vascular disease, including statins and angiotensin-converting–enzyme inhibitors, have well-described pleiotropic effects universally accepted to contribute to their benefit, little attention has been paid to CCBs’ potentially similar effects. Accumulating evidence that at least 1 CCB, amlodipine, has pharmacologic actions distinct from L-type calcium channel blockade prompted us to investigate the pleiotropic actions of amlodipine and CCBs in general. There are several areas of research; foci here are (1) the physicochemical properties of amlodipine and its interaction with cholesterol and oxidants; (2) the mechanism by which amlodipine regulates NO production and implications; and (3) amlodipine’s role in controlling smooth muscle cell proliferation and matrix formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3