A Longitudinal Study of Adaptive Changes in Oxygen Transport and Body Composition

Author:

SALTIN BENGT1,BLOMQVIST GUNNAR1,MITCHELL JERE H.1,JOHNSON ROBERT L.1,WILDENTHAL KERN1,CHAPMAN CARLETON B.1,Frenkel Eugene1,Norton Walter1,Siperstein Marvin1,Suki Wadi1,Vastagh George1,Prengler Abraham1

Affiliation:

1. From the Pauline and Adolph Weinberger Laboratory for Cardiovascular Research, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas.

Abstract

The effects of a 20-day period of bed rest followed by a 55-day period of physical training were studied in five male subjects, aged 19 to 21. Three of the subjects had previously been sedentary, and two of them had been physically active. The studies after bed rest and after physical training were both compared with the initial control studies. Effects of Bed Rest All five subjects responded quite similarly to the bed rest period. The total body weight remained constant; however, lean body mass, total body water, intracellular fluid volume, red cell mass, and plasma volume tended to decrease. Electron microscopic studies of quadriceps muscle biopsies showed no significant changes. There was no effect on total lung capacity, forced vital capacity, one-second expiratory volume, alveolar-arterial oxygen tension difference, or membrane diffusing capacity for carbon monoxide. Total diffusing capacity and pulmonary capillary blood volume were slightly lower after bed rest. These changes were related to changes in pulmonary blood flow. Resting total heart volume decreased from 860 to 770 ml. The maximal oxygen uptake fell from 3.3 in the control study to 2.4 L/min after bed rest. Cardiac output, stroke volume, and arterial pressure at rest in supine and sitting positions did not change significantly. The cardiac output during supine exercise at 600 kpm/min decreased from 14.4 to 12.4 L/min, and stroke volume fell from 116 to 88 ml. Heart rate increased from 129 to 154 beats/min. There was no change in arterial pressure. Cardiac output during upright exercise at submaximal loads decreased approximately 15% and stroke volume 30%. Calculated heart rate at an oxygen uptake of 2 L/min increased from 145 to 180 beats/min. Mean arterial pressures were 10 to 20 mm Hg lower, but there was no change in total peripheral resistance. The A-V 0 2 difference was higher for any given level of oxygen uptake. Cardiac output during maximal work fell from 20.0 to 14.8 L/min and stroke volume from 104 to 74 ml. Total peripheral resistance and A-V 0 2 difference did not change. The Frank lead electrocardiogram showed reduced T-wave amplitude at rest and during submaximal exercise in both supine and upright position but no change during maximal work. The fall in maximal oxygen uptake was due to a reduction of stroke volume and cardiac output. The decrease cannot exclusively be attributed to an impairment of venous return during upright exercise. Stroke volume and cardiac output were reduced also during supine exercise. A direct effect on myocardial function, therefore, cannot be excluded. Effects of Physical Training In all five subjects physical training had no effect on lung volumes, timed vitalometry, and membrane diffusing capacity as compared with control values obtained before bed rest. Pulmonary capillary blood volume and total diffusing capacity were increased proportional to the increase in blood flow. Alveolar-arterial oxygen tension differences during exercise were smaller after training, suggesting an improved distribution of pulmonary blood flow with respect to ventilation. Red cell mass increased in the previously sedentary subjects from 1.93 to 2.05 L, and the two active subjects showed no change. Maximal oxygen uptake increased from a control value of 2.52 obtained before bed rest to 3.41 L/min after physical training in the three previously sedentary (+33%) and from 4.48 to 4.65 L/min in the two previously active subjects (+4%). Cardiac output and oxygen uptake during submaximal work did not change, but the heart rate was lower and the stroke volume higher for any given oxygen uptake after training in the sedentary group. In the sedentary subjects cardiac output during maximal work increased from 17.2 L/min in the control study before bed rest to 20.0 L/min after training (+16.5%). Arterio-venous oxygen difference increased from 14.6 to 17.0 ml/100 ml (+16.5%). Maximal heart rate remained constant, and stroke volume increased from 90 to 105 (+17%). Resting total heart volumes were 740 ml in the control study before bed rest and 812 ml after training. In the previously active subjects changes in heart volume, maximal cardiac output, stroke volume, and arteriovenous oxygen difference were less marked. Previous studies have shown increases of only 10 to 15% in the maximal oxygen uptake of young sedentary male subjects after training. The greater increase of 33% in maximal oxygen uptake in the present study was due equally to an increase in stroke volume and arteriovenous oxygen difference. These more marked changes may be attributed to a low initial level of maximal oxygen uptake and to an extremely strenuous and closely supervised training program.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3