Pharmacological Inhibitor of Notch Signaling Stabilizes the Progression of Small Abdominal Aortic Aneurysm in a Mouse Model

Author:

Cheng Jeeyun1,Koenig Sara N.1,Kuivaniemi Helena S.2,Garg Vidu134,Hans Chetan P.13

Affiliation:

1. Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH

2. The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA

3. Department of Pediatrics, The Ohio State University, Columbus, OH

4. Department of Molecular Genetics, The Ohio State University, Columbus, OH

Abstract

Background The progression of abdominal aortic aneurysm ( AAA ) involves a sustained influx of proinflammatory macrophages, which exacerbate tissue injury by releasing cytokines, chemokines, and matrix metalloproteinases. Previously, we showed that Notch deficiency reduces the development of AAA in the angiotensin II –induced mouse model by preventing infiltration of macrophages. Here, we examined whether Notch inhibition in this mouse model prevents progression of small AAA and whether these effects are associated with altered macrophage differentiation. Methods and Results Treatment with pharmacological Notch inhibitor ( DAPT [N‐(N‐[3,5‐difluorophenacetyl]‐L‐alanyl)‐S‐phenylglycine t‐butyl ester] ) at day 3 or 8 of angiotensin II infusion arrested the progression of AAA in Apoe −/− mice, as demonstrated by a decreased luminal diameter and aortic width. The abdominal aortas of Apoe −/− mice treated with DAPT showed decreased expression of matrix metalloproteinases and presence of elastin precursors including tropoelastin and hyaluronic acid. Marginal adventitial thickening observed in the aorta of DAPT ‐treated Apoe −/− mice was not associated with increased macrophage content, as observed in the mice treated with angiotensin II alone. Instead, DAPT ‐treated abdominal aortas showed increased expression of Cd206‐positive M2 macrophages and decreased expression of Il12‐positive M1 macrophages. Notch1 deficiency promoted M2 differentiation of macrophages by upregulating transforming growth factor β2 in bone marrow–derived macrophages at basal levels and in response to IL4. Protein expression of transforming growth factor β2 and its downstream effector pS mad2 also increased in DAPT ‐treated Apoe −/− mice, indicating a potential link between Notch and transforming growth factor β2 signaling in the M2 differentiation of macrophages. Conclusions Pharmacological inhibitor of Notch signaling prevents the progression of AAA by macrophage differentiation–dependent mechanisms. The study also provides insights for novel therapeutic strategies to prevent the progression of small AAA .

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3