The inhomogeneity and appropriateness of the myocardial response to stress.

Author:

Alpert N R,Mulieri L A

Abstract

Myocardial hypertrophy, with high morbidity and mortality, is a natural outcome of hypertensive heart disease. The increase in myocardial mass is associated with a cellular and subcellular reorganization of the myocytes. The following study uses rapid myothermal techniques to assess the contribution of the major intracellular changes to the adaptive hypertrophic process in various heart models. Pressure overload and thyrotoxic hypertrophy were produced in the rabbit. In the rat, hypertrophy was produced by constricting the renal artery (Goldblatt hypertensive rat) or by using the spontaneously hypertensive rat strain. Atrophy was produced by administration of propylthiouracil in the drinking water. The V1/V3 myosin isoenzyme ratio was decreased in the pressure overload, Goldblatt, and propylthiouracil animals. This was associated with a decrease in total activity-related heat, initial heat, and tension-dependent heat per tension time integral. The tension-independent heat was decreased in the pressure overload, while the time to peak tension was increased. The economy of the metabolic recovery process was unchanged in the pressure overload and Goldblatt preparations. In the propylthiouracil preparation the recovery processes became uneconomical. The spontaneously hypertensive rat exhibited mild cardiac hypertrophy but in all other respects the heart was unchanged from the normal animals. The thyrotoxic hearts had a high V1/V3 myosin isoenzyme ratio, which was associated with a high total activity-related heat, initial heat, and tension-dependent heat per tension time integral. The tension-independent heat was reduced in the thyrotoxic preparations. The appropriateness of each of the intracellular changes is evaluated in terms of the demands made on the heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3