Titin-Based Modulation of Calcium Sensitivity of Active Tension in Mouse Skinned Cardiac Myocytes

Author:

Cazorla Olivier1,Wu Yiming1,Irving Thomas C.1,Granzier Henk1

Affiliation:

1. From the Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology (O.C., Y.W., H.G.), Washington State University, Pullman, Wash, and the Center for Synchrotron Radiation Research and Instrumentation and Department of Biological, Chemical, and Physical Sciences (T.C.I.), Illinois Institute of Technology, Chicago, Ill. Present address of O.C. is INSERM U390/IFR3, Physiopathologie Cardiovasculaire, Montpellier, France.

Abstract

Abstract —We studied the effect of titin-based passive force on the length dependence of activation of cardiac myocytes to explore whether titin may play a role in the generation of systolic force. Force-pCa relations were measured at sarcomere lengths (SLs) of 2.0 and 2.3 μm. Passive tension at 2.3 μm SL was varied from ≈1 to ≈10 mN/mm 2 by adjusting the characteristics of the stretch imposed on the passive cell before activation. Relative to 2.0 μm SL, the force-pCa curve at 2.3 μm SL and low passive tension showed a leftward shift (ΔpCa 50 [change in pCa at half-maximal activation]) of 0.09±0.02 pCa units while at 2.3 μm SL and high passive tension the shift was increased to 0.25±0.03 pCa units. Passive tension also increased ΔpCa 50 at reduced interfilament lattice spacing achieved with dextran. We tested whether titin-based passive tension influences the interfilament lattice spacing by measuring the width of the myocyte and by using small-angle x-ray diffraction of mouse left ventricular wall muscle. Cell width and interfilament lattice spacing varied inversely with passive tension, in the presence and absence of dextran. The passive tension effect on length-dependent activation may therefore result from a radial titin-based force that modulates the interfilament lattice spacing.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 214 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3