Metabolic Activity in Central Neural Structures of Patients With Myocardial Injury

Author:

Fiechter Michael123,Roggo Andrea1,Haider Ahmed12,Bengs Susan12,Burger Irene A.1,Marędziak Monika12,Portmann Angela1,Treyer Valerie1,Becker Anton S.4,Messerli Michael1,Mühlematter Urs J.4,Kudura Ken1,von Felten Elia1,Benz Dominik C.1,Fuchs Tobias A.1,Gräni Christoph1,Pazhenkottil Aju P.1,Buechel Ronny R.1,Kaufmann Philipp A.1,Gebhard Catherine12

Affiliation:

1. Department of Nuclear Medicine University Hospital Zurich Zurich Switzerland

2. Center for Molecular Cardiology University of Zurich Switzerland

3. Swiss Paraplegic Center Nottwil Switzerland

4. Department of Diagnostic and Interventional Radiology University Hospital Zurich Zurich Switzerland

Abstract

Background Increasing evidence suggests a psychosomatic link between neural systems and the heart. In light of the growing burden of ischemic cardiovascular disease across the globe, a better understanding of heart‐brain interactions and their implications for cardiovascular treatment strategies is needed. Thus, we sought to investigate the interaction between myocardial injury and metabolic alterations in central neural areas in patients with suspected or known coronary artery disease. Methods and Results The association between resting metabolic activity in distinct neural structures and cardiac function was analyzed in 302 patients (aged 66.8±10.2 years; 70.9% men) undergoing fluor‐18‐deoxyglucose positron emission tomography and 99m Tc‐tetrofosmin single‐photon emission computed tomography myocardial perfusion imaging. There was evidence for reduction of callosal, caudate, and brainstem fluor‐18‐deoxyglucose uptake in patients with impaired left ventricular ejection fraction (<55% versus ≥55%: P =0.047, P =0.022, and P =0.013, respectively) and/or in the presence of myocardial ischemia (versus normal perfusion: P =0.010, P =0.013, and P =0.016, respectively). In a sex‐stratified analysis, these differences were observed in men, but not in women. A first‐order interaction term consisting of sex and impaired left ventricular ejection fraction or myocardial ischemia was identified as predictor of metabolic activity in these neural regions (left ventricular ejection fraction: P =0.015 for brainstem; myocardial ischemia: P =0.004, P =0.018, and P =0.003 for callosal, caudate, or brainstem metabolism, respectively). Conclusions Myocardial dysfunction and injury are associated with reduced resting metabolic activity of central neural structures, including the corpus callosum, the caudate nucleus, and the brainstem. These associations differ in women and men, suggesting sex differences in the pathophysiological interplay of the nervous and cardiovascular systems.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3