Biodegradable Flow Diverter for the Treatment of Intracranial Aneurysms: A Pilot Study Using a Rabbit Aneurysm Model

Author:

Nishi Hidehisa1,Ishii Akira1,Ono Isao1,Abekura Yu1,Ikeda Hiroyuki12,Arai Daisuke13,Yamao Yukihiro1,Okawa Masakazu1,Kikuchi Takayuki1,Nakakura Akiyoshi4,Miyamoto Susumu1

Affiliation:

1. Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan

2. Department of Neurosurgery Fukui Red Cross Hospital Fukui Japan

3. Department of Neurosurgery Shizuoka General Hospital Shizuoka Japan

4. Department of Biomedical Statistics and Bioinformatics Kyoto University Graduate School of Medicine Kyoto Japan

Abstract

Background Herein, we report an in vivo study of a biodegradable flow diverter ( BDFD ) for aneurysm occlusion. Conceptually, BDFD s induce a temporal flow‐diverting effect and provide a vascular scaffold for neointimal formation at the neck of the aneurysm until occlusion. This offers several potential advantages, including a reduced risk of remote ischemic complications and more treatment options in case of device failure to occlude the aneurysm. Methods and Results A BDFD consisting of 48 poly‐ l ‐lactic acid wires with radiopaque markers at both ends was prepared. An in vitro degradation test of the BDFD was performed. Thirty‐six BDFD s were implanted in a rabbit aneurysm model. Digital angiography, optical coherence tomography, histopathology, and scanning electron microscopy were performed after 1, 3, and 6 months, and 1 year. The in vitro degradation test showed that the BDFD was almost degraded in 1.5 years. In the in vivo experiment, aneurysm occlusion rates were 0% at 1 month, 20% at 3 months, 50% at 6 months, and 33% at 1 year. Optical coherence tomography showed that luminal area stenosis was the highest at 3 months (16%) and decreased afterward. Immunohistochemical analysis showed that more than half of the luminal surface area was covered by endothelial cells at 1 month. Device fragmentation was not observed in any lesions. Conclusions This first in vivo study of a BDFD shows the feasibility of using BDFDs for treating aneurysms; however, a longer follow‐up is required for comprehensive evaluation of the biological and mechanical behavior peculiar to biodegradable devices.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3