Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress.

Author:

Sato M,Levesque M J,Nerem R M

Abstract

The mechanical properties of cultured bovine aortic endothelial cells exposed to a fluid-imposed shear stress were studied using the micropipette technique. The cells, which were attached to a Thermanox plastic substrate, were exposed to a specific steady shear stress of either 10, 30, or 85 dynes/cm2 and for a duration ranging from 0.5 to 24 hours. Morphological changes in shape and orientation were observed, and following each experiment, the mechanical properties were measured using the micropipette aspiration technique applied to cells detached from the substrate. Fluorescent microscopy was carried out to observe cytoskeletal F-actin filaments stained with rhodamine phalloidin. During exposure to shear, the en face shape of the endothelial cells on the substrate became more elongated and their long axis became oriented to the direction of flow. There was also an alteration in the F-actin filaments. These changes were dependent on both the level of shear stress and the duration of exposure. After detachment, the cells exposed to shear maintained their deformed shape. This is in contrast to cells in a static, no-flow environment which became spherical in shape upon detachment. Cells exposed to shear stress demonstrated a mechanical stiffness significantly greater than that of control cells, which was dependent on both the level of shear stress and the duration of exposure. Furthermore, it appears that the influence of shear stress on endothelial cell mechanical stiffness may be related to alterations in cytoskeletal structure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3