Cyclooxygenase 1–Derived Prostaglandin E 2 and EP1 Receptors Are Required for the Cerebrovascular Dysfunction Induced by Angiotensin II

Author:

Capone Carmen1,Faraco Giuseppe1,Anrather Josef1,Zhou Ping1,Iadecola Costantino1

Affiliation:

1. From the Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY.

Abstract

Prostaglandin E 2 (PGE 2 ) EP1 receptors (EP1Rs) may contribute to hypertension and related end-organ damage. Because of the key role of angiotensin II (Ang II) in hypertension, we investigated the role of EP1R in the cerebrovascular alterations induced by Ang II. Mice were equipped with a cranial window, and cerebral blood flow was monitored by laser-Doppler flowmetry. The attenuation in cerebral blood flow responses to whisker stimulation (−46±4%) and the endothelium-dependent vasodilator acetylcholine (−40±4%) induced by acute administration of Ang II (250 ng/kg per minute; IV for 30 to 40 minutes) were not observed after cyclooxygenase 1 or EP1R inhibition or in cyclooxygenase 1 or EP1-null mice. In contrast, cyclooxygenase 2 inhibition or genetic inactivation did not prevent the attenuation. Ang II–induced oxidative stress was not observed after cyclooxygenase 1 or EP1R inhibition or in EP1R-null mice. Prostaglandin E 2 reinstated the Ang II–induced cerebrovascular dysfunction and oxidative stress after cyclooxygenase 1 inhibition. Brain prostaglandin E 2 levels were not increased by Ang II but were attenuated by cyclooxygenase 1 and not cyclooxygenase 2 inhibition. The cerebrovascular dysfunction induced by 14-day administration of “slow-pressor” doses of Ang II (600 ng/kg per minute) was attenuated by neocortical application of SC51089. Cyclooxygenase 1 immunoreactivity was observed in microglia and EP1R in endothelial cells. We conclude that the cerebrovascular dysfunction induced by Ang II requires activation of EP1R by constitutive production of prostaglandin E 2 derived from cyclooxygenase 1. The findings provide the first evidence that EP1Rs are involved in the deleterious cerebrovascular effects of Ang II and suggest new therapeutic approaches to counteract them.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3