Oxidative Stress Promotes Hypertension and Albuminuria During the Autoimmune Disease Systemic Lupus Erythematosus

Author:

Mathis Keisa W.1,Venegas-Pont Marcia1,Masterson C. Warren1,Stewart Nicholas J.1,Wasson Katie L.1,Ryan Michael J.1

Affiliation:

1. From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS.

Abstract

Several lines of evidence suggest that essential hypertension originates from an autoimmune-mediated mechanism. One consequence of chronic immune activation is the generation of oxygen-derived free radicals, resulting in oxidative stress. Renal oxidative stress has direct prohypertensive actions on renal microvascular and tubular function. Whether oxidative stress contributes to the prevalent hypertension associated with autoimmune disease is not clear. We showed previously that female NZBWF1 mice, an established model of the autoimmune disease systemic lupus erythematosus (SLE), develop hypertension associated with renal oxidative stress. In the present study we tested the hypothesis that oxidative stress contributes to autoimmune-mediated hypertension by treating SLE and control (NZW/LacJ) mice with tempol (2.0 mmol/L) and apocynin (1.5 mmol/L) in the drinking water for 4 weeks. Although the treatment did not alter SLE disease activity (assessed by plasma double-stranded DNA autoantibodies), blood pressure and renal injury (urinary albumin) were reduced in the treated SLE mice. Tempol plus apocynin–treated SLE mice had reduced expression of nitrosylated proteins in the renal cortex, as well as reduced urinary and renal cortical hydrogen peroxide, suggesting that treatment reduced renal markers of oxidative stress. These data suggest that renal oxidative stress plays an important mechanistic role in the development of autoimmune-mediated hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3