Shear Stress Mediates Endothelial Adaptations to Exercise Training in Humans

Author:

Tinken Toni M.1,Thijssen Dick H.J.1,Hopkins Nicola1,Dawson Ellen A.1,Cable N. Timothy1,Green Daniel J.1

Affiliation:

1. From the Research Institute for Sport and Exercise Science (T.M.T., D.H.J.T., N.H., E.A.D., N.T.C., D.J.G.), Liverpool John Moores University, Liverpool, United Kingdom; Department of Physiology (D.H.J.T.), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; School of Sport Science, Exercise and Health (D.J.G.), The University of Western Australia, Crawley, Western Australia.

Abstract

Although episodic changes in shear stress have been proposed as the mechanism responsible for the effects of exercise training on the vasculature, this hypothesis has not been directly addressed in humans. We examined brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men in response to an acute bout of handgrip exercise and across an 8-week period of bilateral handgrip training. Shear stress responses were attenuated in one arm by cuff inflation to 60 mm Hg. Similar increases were observed in grip strength and forearm volume and girth in both limbs. Acute bouts of handgrip exercise increased shear rate ( P <0.005) and flow-mediated dilation percentage ( P <0.05) in the uncuffed limb, whereas no changes were evident in the cuffed arm. Handgrip training increased flow-mediated dilation percentage in the noncuffed limb at weeks 2, 4, and 6 ( P <0.001), whereas no changes were observed in the cuffed arm. Brachial artery peak reactive hyperemia, an index of resistance artery remodeling, progressively increased with training in the noncuffed limb ( P <0.001 and 0.004); no changes were evident in the cuffed arm. Neither acute nor chronic shear manipulation during exercise influenced endothelium-independent glyceryl trinitrate responses. These results demonstrate that exercise-induced changes in shear provide the principal physiological stimulus to adaptation in flow-mediated endothelial function and vascular remodeling in response to exercise training in healthy humans.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3