Neovascularization Is Attenuated With Aldosterone Synthase Inhibition in Rats With Retinopathy

Author:

Deliyanti Devy1,Miller Antonia G.1,Tan Genevieve1,Binger Katrina J.1,Samson Andre L.1,Wilkinson-Berka Jennifer L.1

Affiliation:

1. From the Department of Immunology (D.D., A.G.M., G.T., K.J.B., J.L.W.-B.), Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Australian Centre for Blood Diseases (A.L.S.), Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.

Abstract

Neovascularization is a hallmark feature of retinopathy of prematurity and diabetic retinopathy. Type 1 angiotensin receptor blockade reduces neovascularization in experimental retinopathy of prematurity, known as oxygen-induced retinopathy (OIR). We investigated in OIR whether inhibiting aldosterone with the aldosterone synthase inhibitor FAD286 reduced neovascularization as effectively as angiotensin receptor blockade (valsartan). OIR was induced in neonatal Sprague-Dawley rats, and they were treated with FAD286 (30 mg/kg per day), valsartan (10 mg/kg per day), or FAD286+valsartan. The cellular sources of aldosterone synthase, the mineralocorticoid receptor, and 11β-hydroxysteroid dehydrogenase 2 were evaluated in retinal cells involved in neovascularization (primary endothelial cells, pericytes, microglia, ganglion cells, and glia). In OIR, FAD286 reduced neovascularization and neovascular tufts by 89% and 67%, respectively, and normalized the increase in vascular endothelial growth factor mRNA (1.74-fold) and protein (4.74-fold) and was as effective as valsartan and FAD286+valsartan. In retina, aldosterone synthase mRNA was reduced with FAD286 but not valsartan. Aldosterone synthase was detected in microglia, ganglion cells, and glia, whereas mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase 2 were present in all of the cell types studied. Given the location of aldosterone synthase in microglia and their contribution to retinal inflammation and neovascularization in OIR, the effects of FAD286 on microglial density were studied. The increase in microglial density (ionized calcium binding adaptor protein 1 immunolabeling) in OIR was reduced with all of the treatments. In OIR, FAD286 reduced the increase in mRNA for tumor necrosis factor-α, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and monocyte chemoattractant molecule 1. These findings indicate that aldosterone inhibition may be a potential treatment for retinal neovascularization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3