Hypokalemia and Pendrin Induction by Aldosterone

Author:

Xu Ning1,Hirohama Daigoro1,Ishizawa Kenichi1,Chang Wen Xiu1,Shimosawa Tatsuo1,Fujita Toshiro1,Uchida Shunya1,Shibata Shigeru1

Affiliation:

1. From the Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan (N.X., K.I., S.U., S.S.); Department of Nephrology, Tianjin First Central Hospital, China (N.X., W.X.C.); and Division of Clinical Epigenetics, Research Center for Advanced Science and Technology (D.H., T.F., S.S.) and Department of Clinical Laboratory, School of Medicine (T.S.), The University of Tokyo, Japan.

Abstract

Aldosterone plays an important role in regulating Na-Cl reabsorption and blood pressure. Epithelial Na + channel, Na + -Cl cotransporter, and Cl /HCO 3 exchanger pendrin are the major mediators of Na-Cl transport in the aldosterone-sensitive distal nephron. Existing evidence also suggests that plasma K + concentration affects renal Na-Cl handling. In this study, we posited that hypokalemia modulates the effects of aldosterone on pendrin in hyperaldosteronism. Chronic aldosterone infusion in mice increased pendrin levels at the plasma membrane, and correcting hypokalemia in this model almost completely blocked pendrin upregulation. However, hypokalemia induced by a low-K + diet resulted in pendrin downregulation along with reduced plasma aldosterone levels, indicating that both hypokalemia and aldosterone excess are necessary for pendrin induction. In contrast, decreased plasma K + levels were sufficient to increase Na + -Cl cotransporter levels. We found that phosphorylation of mineralocorticoid receptor that prevents aldosterone binding in intercalated cells was suppressed by hypokalemia, which resulted in enhanced pendrin response to aldosterone, explaining the coordinated action of aldosterone and hypokalemia in pendrin regulation. Finally, to address the physiological significance of our observations, we administered aldosterone to mice lacking pendrin. Notably, plasma K + levels were significantly lower in pendrin knockout mice (2.7±0.1 mmol/L) than in wild-type mice (3.0±0.1 mmol/L) after aldosterone infusion, demonstrating that pendrin alleviates hypokalemia in a state of aldosterone excess. These data indicate that the decreased plasma K + levels promote pendrin induction by aldosterone, which, in concert with Na + -Cl cotransporter, counteracts the progression of hypokalemia but promotes hypertension in primary aldosterone excess.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3