Nitric Oxide Deficiency and Increased Adenosine Response of Afferent Arterioles in Hydronephrotic Mice With Hypertension

Author:

Carlström Mattias1,Lai En Yin1,Steege Andreas1,Sendeski Mauricio1,Ma Zufu1,Zabihi Sheller1,Eriksson Ulf J.1,Patzak Andreas1,Persson A. Erik G.1

Affiliation:

1. From the Department of Medical Cell Biology (M.C., E.Y.L., Z.M., S.Z., U.J.E., A.P., A.E.G.P.), Division of Integrative Physiology, Uppsala University, Uppsala, Sweden; Institute of Vegetative Physiology (A.S., M.S., A.P.), University Hospital Charité, Humboldt University of Berlin, Germany; and the Division of Nephrology (Z.M.), Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China.

Abstract

Afferent arterioles were used to investigate the role of adenosine, angiotensin II, NO, and reactive oxygen species in the pathogenesis of increased tubuloglomerular feedback response in hydronephrosis. Hydronephrosis was induced in wild-type mice, superoxide dismutase-1 overexpressed mice (superoxide-dismutase-1 transgenic), and deficient mice (superoxide dismutase-1 knockout). Isotonic contractions in isolated perfused arterioles and mRNA expression of NO synthase isoforms, adenosine, and angiotensin II receptors were measured. In wild-type mice, N G -nitro- l -arginine methyl ester ( l -NAME) did not change the basal arteriolar diameter of hydronephrotic kidneys (−6%) but reduced it in control (−12%) and contralateral arterioles (−43%). Angiotensin II mediated a weaker maximum contraction of hydronephrotic arterioles (−18%) than in control (−42%) and contralateral arterioles (−49%). The maximum adenosine-induced constriction was stronger in hydronephrotic (−19%) compared with control (−8%) and contralateral kidneys (±0%). The response to angiotensin II became stronger in the presence of adenosine in hydronephrotic kidneys and attenuated in contralateral arterioles. l -NAME increased angiotensin II responses of all of the groups but less in hydronephrotic kidneys. The mRNA expression of endothelial NO synthase and inducible NO synthase was upregulated in the hydronephrotic arterioles. No differences were found for adenosine or angiotensin II receptors. In superoxide dismutase-1 transgenic mice, strong but similar l -NAME response (−40%) was observed for all of the groups. This response was totally abolished in arterioles of hydronephrotic superoxide dismutase-1 knockout mice. In conclusion, hydronephrosis is associated with changes in the arteriolar reactivity of both hydronephrotic and contralateral kidneys. Increased oxidative stress, reduced NO availability, and stronger reactivity to adenosine of the hydronephrotic kidney may contribute to the enhanced tubuloglomerular feedback responsiveness in hydronephrosis and be involved in the development of hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3