Deletion of Mineralocorticoid Receptors From Macrophages Protects Against Deoxycorticosterone/Salt-Induced Cardiac Fibrosis and Increased Blood Pressure

Author:

Rickard Amanda J.1,Morgan James1,Tesch Greg1,Funder John W.1,Fuller Peter J.1,Young Morag J.1

Affiliation:

1. From the Prince Henry’s Institute of Medical Research (A.J.R., J.M., J.W.F., P.J.F., M.J.Y.) and Department of Nephrology, Monash Medical Centre (G.T.), and Department of Physiology (A.J.R., M.J.Y.), Monash University, Clayton, Australia.

Abstract

Increased mineralocorticoid levels plus high salt promote vascular inflammation and cardiac tissue remodeling. Mineralocorticoid receptors are expressed in many cell types of the cardiovascular system, including monocytes/macrophages and other inflammatory cell types. Although mineralocorticoid receptors are expressed in monocytes/macrophages, their role in regulating macrophage function to date has not been investigated. We, thus, used the Cre/LoxP-recombination system to selectively delete mineralocorticoid receptors from monocytes/macrophages with the lysozyme M promoter used to drive Cre expression (MR flox/flox /LysM Cre/− mice). Male mice from each genotype (MR flox/flox or wild-type and MR flox/flox /LysM Cre/− mice) were uninephrectomized, given 0.9% NaCl solution to drink, and treated for 8 days or 8 weeks with either vehicle (n=10) or deoxycorticosterone (n=10). Equivalent tissue macrophage numbers were seen for deoxycorticosterone treatment of each genotype at 8 days; in contrast, plasminogen activator inhibitor type 1 and NAD(P)H oxidase subunit 2 levels were increased in wild-type but not in MR flox/flox /LysM Cre/− mice given deoxycorticosterone. Baseline expression of other inflammatory genes was reduced in MR flox/flox /LysM Cre/− mice compared with wild-type mice. At 8 weeks, deoxycorticosterone-induced macrophage recruitment and connective tissue growth factor and plasminogen activator inhibitor type 1 mRNA levels were similar for each genotype; in contrast, MR flox/flox /LysM Cre/− mice showed no increase in cardiac fibrosis or blood pressure, as was seen in wild-type mice at 8 weeks. These data demonstrate the following points: (1) mineralocorticoid receptor signaling regulates basal monocyte/macrophage function; (2) macrophage recruitment is not altered by loss of mineralocorticoid receptor signaling in these cells; and (3) a novel and significant role is seen for macrophage signaling in the regulation of cardiac remodeling and systolic blood pressure in the deoxycorticosterone/salt model.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 262 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3