VEGFR (Vascular Endothelial Growth Factor Receptor) Inhibition Induces Cardiovascular Damage via Redox-Sensitive Processes

Author:

Neves Karla B.1,Rios Francisco J.1,van der Mey Lucas1,Alves-Lopes Rheure1,Cameron Alan C.1,Volpe Massimo1,Montezano Augusto C.1,Savoia Carmine1,Touyz Rhian M.1

Affiliation:

1. From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (K.B.N., F.J.R., L.v.d.M., R.A.-L., A.C.C., A.C.M., R.M.T.); Department of Clinical and Molecular Medicine, Cardiology Unit Sant’Andrea Hospital, Sapienza University of Rome, Italy (M.V., C.S.); and Department of AngioCardioNeurology and Translational Medicine, IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy (M.V.).

Abstract

Although VEGF (vascular endothelial growth factor) inhibitors (VEGFIs), are effective anticancer therapies, they cause hypertension through unknown mechanisms. We questioned whether changes in vascular redox state may be important, because VEGF signaling involves nitric oxide (NO) and reactive oxygen species. Molecular mechanisms, including NOS, NADPH oxidase (Nox)–derived reactive oxygen species, antioxidant systems, and vasoconstrictor signaling pathways, were probed in human endothelial cells and vascular smooth muscle exposed to vatalanib, a VEGFI. Vascular functional effects of VEGFI were assessed ex vivo in mouse arteries. Cardiovascular and renal in vivo effects were studied in vatalanib- or gefitinib (EGFI [epidermal growth factor inhibitor])-treated mice. In endothelial cells, vatalanib decreased eNOS (Ser 1177 ) phosphorylation and reduced NO and H 2 O 2 production, responses associated with increased Nox-derived O 2 and ONOO formation. Inhibition of Nox1/4 (GKT137831) or Nox1 (NoxA1ds), prevented vatalanib-induced effects. Nrf-2 (nuclear factor erythroid 2–related factor 2) nuclear translocation and expression of Nrf-2–regulated antioxidant enzymes were variably downregulated by vatalanib. In human vascular smooth muscles, VEGFI increased Nox activity and stimulated Ca 2+ influx and MLC 20 phosphorylation. Acetylcholine-induced vasodilatation was impaired and U46619-induced vasoconstriction was enhanced by vatalanib, effects normalized by N-acetyl-cysteine and worsened by L-NAME. In vatalanib-, but not gefitinib-treated mice vasorelaxation was reduced and media:lumen ratio of mesenteric arteries was increased with associated increased cardiovascular and renal oxidative stress, decreased Nrf-2 activity and downregulation of antioxidant genes. We demonstrate that inhibition of VEGF signaling induces vascular dysfunction through redox-sensitive processes. Our findings identify Noxs and antioxidant enzymes as novel targets underling VEGFI-induced vascular dysfunction. These molecular processes may contribute to vascular toxicity and hypertension in VEGFI-treated patients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3