Affiliation:
1. From the Department of Physiology and Biophysics, Biological Science Institute, National Institute of Science and Technology-Nanobiofar, Federal University of Minas Gerais, Belo Horizonte, Brazil (P.S.G., M.F.O., J.F.B., A.P.N., R.A.S.S., M.J.C.-S.); and Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, TX (A.S.).
Abstract
We evaluated effects of chronic intracerebroventricular infusion of angiotensin (Ang)-(1–7) on cardiovascular and metabolic parameters in fructose-fed (FF) rats. After 6 weeks of fructose intake (10% in drinking water), Sprague-Dawley rats were subjected to intracerebroventricular infusion of Ang-(1–7) (200 ng/h; FF+A7 group) or 0.9% sterile saline (FF group) for 4 weeks with continued access to fructose. Compared with control rats, FF rats had increased mean arterial pressure and cardiac sympathetic tone with impaired baroreflex sensitivity. FF rats also presented increased circulating triglycerides, leptin, insulin, and glucose with impaired glucose tolerance. Furthermore, relative weights of liver and retroperitoneal adipose tissue were increased in FF rats. Glycogen content was reduced in liver, but increased in muscle. In contrast, fructose-fed rats subjected to chronic intracerebroventricular infusion of Ang-(1–7) presented reduced cardiac sympathetic tone with normalized mean arterial pressure, baroreflex sensitivity, glucose and insulin levels, and improved glucose tolerance. Relative weight of liver, and hepatic and muscle glycogen contents were also normalized in FF+A7 rats. In addition, FF+A7 rats had reduced mRNA expression for neuronal nitric oxide synthase and NR1 subunit of
N
-methyl-
d
-aspartate receptor in hypothalamus and dorsomedial medulla. Ang-(1–7) infusion did not alter fructose-induced hyperleptinemia and increased relative weight of retroperitoneal adipose tissue. There were no differences in body weights, neither in liver mRNA expression of phosphoenolpyruvate carboxykinase or glucose-6-phosphatase among the groups. These data indicate that chronic increase in Ang-(1–7) levels in the brain may have a beneficial role in fructose-fed rats by ameliorating cardiovascular and metabolic disorders.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献