Growth Differentiation Factor 11 Promotes Abnormal Proliferation and Angiogenesis of Pulmonary Artery Endothelial Cells

Author:

Yu Xiufeng1,Chen Xinxin1,Zheng Xiao Dong1,Zhang Junting1,Zhao Xijuan1,Liu Ying1,Zhang Hongyue1,Zhang Lixin1,Yu Hao1,Zhang Min1,Ma Cui1,Hao Xuewei1,Zhu Daling1

Affiliation:

1. From the College of Medical Laboratory Science and Technology (X.Y., X.Z., L.Z., C.M., X.H.) and Department of Pharmacology (X.D.Z., H.Y.), Harbin Medical University (Daqing), P.R. China; Central Laboratory of Harbin Medical University (Daqing), P.R. China (X.Y., X.C., X.D.Z., J.Z., X.Z., Y.L., H.Z., L.Z., H.Y., M.Z., C.M., X.H., D.Z.); and Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, P.R. China (X.Y., X.C., X.D.Z., J.Z., X.Z., Y.L., H.Z., L.Z., H.Y., M.Z...

Abstract

Disordered proliferation and angiogenesis of pulmonary artery endothelial cells is an important stage in the development of pulmonary arterial hypertension. Recent studies revealed that GDF11 (growth differentiation factor 11) induces endothelial cells proliferation and migration; however, whether GDF11 is directly involved in the pathogenesis of pulmonary arterial hypertension remains unknown. Here, we found that GDF11 was significantly upregulated and activated in 2 experimental pulmonary arterial hypertension models and cultured pulmonary artery endothelial cells. Genetic ablation of gdf11 in endothelial cells rescued pulmonary arterial hypertension features, as demonstrated by right ventricle hypertrophy, right ventricular systolic pressure, hemodynamics, cardiac function, and vascular remodeling. Moreover, we found that hypoxia significantly increased cell cycle progression, proliferation, migration, adhesion, and tube formation, which were significantly inhibited by GDF11 small interfering RNA. These events could be reproduced using cultured pulmonary artery endothelial cells and were dependent on Smad signaling. Moreover, hypoxia-induced GDF11 expression was regulated by the transcription factor zinc finger protein 740, which assisted RNA polymerase in recognizing and binding to the GDF11 promoter sequence located at a site (−753/−744; CCCCCCCCAC) upstream of the gene. This study identified a novel growth and differentiation factor signaling pathway involved in the zinc finger protein 740/GDF11/transforming growth factor-β receptor I/Smad signaling axis and involved in pulmonary artery endothelial cells proliferation and angiogenesis. These results provide critical insights for the development of novel therapeutic strategies for pulmonary arterial hypertension involving components of the GDF11 signaling system.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3