Endothelial GTPCH (GTP Cyclohydrolase 1) and Tetrahydrobiopterin Regulate Gestational Blood Pressure, Uteroplacental Remodeling, and Fetal Growth

Author:

Chuaiphichai Surawee1ORCID,Yu Grace Z.2,Tan Cheryl M.J.2ORCID,Whiteman ChristopherORCID,Douglas Gillian1,Dickinson Yasmin1,Drydale Edward N.1,Appari Mahesh1,Zhang Wei3,Crabtree Mark J.1ORCID,McNeill Eileen1,Hale Ashley B.1,Lewandowski Adam J.2,Alp Nicholas J.1,Vatish Manu34,Leeson Paul2,Channon Keith M.14

Affiliation:

1. Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, United Kingdom (S.C., C.W., G.D., Y.D., E.N.D., M.A., M.J.C., E.M., A.B.H., N.J.A., K.M.C.).

2. Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine (G.Z.Y., C.M.J.T., A.J.L., P.L.), University of Oxford, United Kingdom.

3. Nuffield Department of Women’s and Reproductive Health (W.Z., M.V.), University of Oxford, United Kingdom.

4. National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, United Kingdom (M.V., K.M.C.).

Abstract

Abnormal uteroplacental remodeling leads to placental hypoperfusion, causing fetal growth restriction and pregnancy-related hypertension, which are associated with endothelial dysfunction and markers of reduced vascular NO bioavailability and oxidative stress. Tetrahydrobiopterin (BH4) is a redox cofactor for eNOS (endothelial NO synthase) with a required role in NO generation. Using mice models and human samples, we investigated the physiological requirement for endothelial cell BH4 in uteroplacental vascular adaptation and blood pressure regulation to pregnancy. In pregnant mice, selective maternal endothelial BH4 deficiency resulting from targeted deletion of Gch1 caused progressive hypertension during pregnancy and fetal growth restriction. Maternal endothelial cell Gch1 deletion caused defective functional and structural remodeling in uterine arteries and in spiral arteries, leading to placental insufficiency. Using primary endothelial cells isolated from either normal or hypertensive pregnancies, we found that hypertensive pregnancies are associated with reduced endothelial cell BH4 levels, impaired eNOS activity, and reduced endothelial cell proliferation, mediated by reduced GTPCH (GTP cyclohydrolase 1) protein. In rescue experiments, high blood pressure and fetal growth restriction in pregnant endothelial cell Gch1 deficient mice was not rescued by oral BH4 supplementation, due to systemic oxidation of BH4 to dihydrobiopterin. However, the fully reduced folate, 5-methyltetrahydrofolate prevented BH4 oxidation, reduced blood pressure to normal levels, and normalized fetal growth. We identify a critical requirement for maternal endothelial cell BH4 biosynthesis in uteroplacental vascular remodeling in pregnancy. Restoration of endothelial cell BH4 with reduced folates identifies a novel therapeutic target for the prevention and treatment of pregnancy-related hypertension such as preeclampsia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3