Regulator of G-Protein Signaling 10 Negatively Regulates Cardiac Remodeling by Blocking Mitogen-Activated Protein Kinase–Extracellular Signal-Regulated Protein Kinase 1/2 Signaling

Author:

Miao Rujia1,Lu Yao1,Xing Xiaowei1,Li Ying1,Huang Zhijun1,Zhong Hua1,Huang Yun1,Chen Alex F.1,Tang Xiaohong1,Li Hongliang1,Cai Jingjing1,Yuan Hong1

Affiliation:

1. From the Department of Cardiology (R.M., H.Z., A.F.C., X.T., J.C., H.Y.) and Center of Clinical Pharmacology (Y.L., X.X., Y.L., Z.H., Y.H., J.C., H.Y.), the Third Xiangya Hospital, Central South University, Changsha, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (H.L.).

Abstract

Regulator of G-protein signaling 10 (RGS10) is an important member of the RGS family and produces biological effects in multiple organs. We used a genetic approach to study the role of RGS10 in the regulation of pathological cardiac hypertrophy and found that RGS10 can negatively influence pressure overload–induced cardiac remodeling. RGS10 expression was markedly decreased in failing human hearts and hypertrophic murine hearts. The extent of aortic banding–induced cardiac hypertrophy, dysfunction, and fibrosis in RGS10-knockout mice was exacerbated, whereas the heart of transgenic mice with cardiac-specific RGS10 overexpression exhibited an alleviated response to pressure overload. Consistently, RGS10 also inhibited an angiotensin II–induced hypertrophic response in isolated cardiomyocytes. Mechanistically, cardiac remodeling improvement elicited by RGS10 was associated with the abrogation of mitogen-activated protein kinase kinase 1/2–extracellular signal-regulated protein kinase 1/2 signaling. Furthermore, the inhibition of mitogen-activated protein kinase kinase–extracellular signal-regulated protein kinase 1/2 transduction abolished RGS10 deletion-induced hypertrophic aggravation. These findings place RGS10 and its downstream signaling mitogen-activated protein kinase kinase–extracellular signal-regulated protein kinase 1/2 as crucial regulators of pathological cardiac hypertrophy after pressure overload and identify this pathway as a potential therapeutic target to attenuate the pressure overload–driven cardiac remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3