Conversion of Renal Angiotensin II to Angiotensin III Is Critical for AT 2 Receptor–Mediated Natriuresis In Rats

Author:

Padia Shetal H.1,Kemp Brandon A.1,Howell Nancy L.1,Fournie-Zaluski Marie-Claude1,Roques Bernard P.1,Carey Robert M.1

Affiliation:

1. From the Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville.

Abstract

In the kidney, angiotensin II (Ang II) is metabolized to angiotensin III (Ang III) by aminopeptidase A (APA). In turn, Ang III is metabolized to angiotensin IV by aminopeptidase N (APN). Renal interstitial (RI) infusion of Ang III, but not Ang II, results in angiotensin type-2 receptor (AT 2 R)-mediated natriuresis. This response is augmented by coinfusion of PC-18, a specific inhibitor of APN. The present study addresses the hypotheses that Ang II conversion to Ang III is critical for the natriuretic response. Sprague-Dawley rats received systemic angiotensin type-1 receptor (AT 1 R) blockade with candesartan (CAND; 0.01 mg/kg/min) for 24 hours before and during the experiment. After a control period, rats received either RI infusion of Ang II or Ang II+PC-18. The contralateral kidney received a RI infusion of vehicle in all rats. Mean arterial pressure (MAP) was monitored, and urinary sodium excretion rate (U Na V) was calculated separately from experimental and control kidneys for each period. In contrast to Ang II–infused kidneys, U Na V from Ang II+PC-18-infused kidneys increased from a baseline of 0.03±0.01 to 0.09±0.02 μmol/min ( P <0.05). MAP was unchanged by either infusion. RI addition of PD-123319, an AT 2 R antagonist, inhibited the natriuretic response. Furthermore, RI addition of EC-33, a selective APA inhibitor, abolished the natriuretic response to Ang II+PC-18. These data demonstrate that RI addition of PC-18 to Ang II enables natriuresis mediated by the AT 2 R, and that conversion of Ang II to Ang III is critical for this response.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3