Loss of Biphasic Effect on Na/K-ATPase Activity by Angiotensin II Involves Defective Angiotensin Type 1 Receptor-Nitric Oxide Signaling

Author:

Banday Anees Ahmad1,Lokhandwala Mustafa F.1

Affiliation:

1. From the Heart and Kidney Institute, College of Pharmacy, University of Houston, Tex.

Abstract

Oxidative stress causes changes in angiotensin (Ang) type 1 receptor (AT1R) function, which contributes to hypertension. Ang II affects blood pressure via maintenance of sodium homeostasis by regulating renal Na + absorption through its effects on Na/K-ATPase (NKA). At low concentrations, Ang II stimulates NKA; higher concentrations inhibit the enzyme. We examined the effect of oxidative stress on renal AT1R function involved in biphasic regulation of NKA. Male Sprague-Dawley rats received tap water (control) and 30 mmol/L of l -buthionine sulfoximine (BSO), an oxidant, with and without 1 mmol/L of Tempol (antioxidant) for 2 weeks. BSO-treated rats exhibited increased oxidative stress, AT1R upregulation, and hypertension. In proximal tubules from control rats, Ang II exerted a biphasic effect on NKA activity, causing stimulation of the enzyme at picomolar and inhibition at micromolar concentrations. However, in BSO-treated rats, Ang II caused stimulation of NKA at both of the concentrations. The effect of Ang II was abolished by the AT1R antagonist candesartan and the mitogen-activated protein kinase inhibitor UO126, whereas the Ang type 2 receptor antagonist PD-123319 and NO synthase inhibitor N G -nitro- l -arginine methyl ester had no effect. The inhibitory effect of Ang II was sensitive to candesartan and N G -nitro- l -arginine methyl ester, whereas PD-123319 and UO126 had no effect. In BSO-treated rats, Ang II showed exaggerated stimulation of NKA, mitogen-activated protein kinase, proline-rich-tyrosine kinase 2, and NADPH oxidase but failed to activate NO signaling. Tempol reduced oxidative stress, normalized AT1R signaling, unmasked the biphasic effect on NKA, and reduced blood pressure in BSO-treated rats. In conclusion, oxidative stress-mediated AT1R upregulation caused a loss of NKA biphasic response and hypertension. Tempol normalized AT1R signaling and blood pressure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3