Affiliation:
1. From the Vascular Biology Center (M.P.S., D.M.P., J.S.P.), Medical College of Georgia, Augusta; and the Division of Nephrology (Y.G., D.E.K.), University of Utah Health Sciences Center, Salt Lake City.
Abstract
Mice with a collecting duct-specific deletion of endothelin-1 are hypertensive and have impaired Na excretion. Because endothelin-1 activates NO synthase (NOS) in the collecting duct, we hypothesized that impaired renal NO production in knockout mice exacerbates the hypertensive state. Control and knockout mice were treated chronically with
N
G
-nitro-
l
-arginine methyl ester, and blood pressure (BP) and urinary nitrate/nitrite excretion were assessed. On a normal Na diet, knockout systolic BP was 18 mm Hg greater than in controls.
N
G
-nitro-
l
-arginine methyl ester increased BP in control mice by 30 mm Hg and 10 mm Hg in collecting duct-specific deletion of endothelin-1 knockout mice, thereby abolishing the difference in systolic BP between the groups. A high-Na diet increased BP similarly in both groups. Urinary nitrate/nitrite excretion was lower in knockout mice than in controls on normal or high Na intake. In separate experiments, renal perfusion pressure was adjusted in anesthetized mice, and urinary nitrate/nitrite and Na excretion were determined. Similar elevations of BP increased urinary Na and nitrate/nitrite excretion in control mice but to a significantly lesser extent in knockout mice. Isoform-specific NOS activity and expression were determined in renal inner medulla homogenates from control and knockout mice. NOS1 and NOS3 activities were lower in knockout than in control mice given normal or high-Na diets. However, NOS1 or NOS3 protein expressions were similar in both groups on normal or high-Na intake. These data demonstrate that collecting duct-derived endothelin-1 is important in the following: (1) chronic
N
G
-nitro-
l
-arginine methyl ester–induced hypertension; (2) full expression of pressure-dependent changes in sodium excretion; and (3) control of inner medullary NOS1 and NOS3 activity.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献