Mesenchymal Stem Cell–Derived Extracellular Vesicles Induce Regulatory T Cells to Ameliorate Chronic Kidney Injury

Author:

Song Turun1,Eirin Alfonso1,Zhu Xiangyang1,Zhao Yu1,Krier James D.1,Tang Hui1,Jordan Kyra L.1,Woollard John R.1,Taner Timucin2,Lerman Amir3,Lerman Lilach O.1

Affiliation:

1. From the Division of Nephrology and Hypertension (T.S., A.E., X.Z., Y.Z., J.D.K., H.T., K.L.J., J.R.W., L.O.L.), Mayo Clinic, Rochester, MN

2. Department of Transplant Surgery and Immunology (T.T.), Mayo Clinic, Rochester, MN

3. Department of Cardiovascular Diseases (A.L.), Mayo Clinic, Rochester, MN

Abstract

Metabolic syndrome (MetS) profoundly changes the contents of mesenchymal stem cells and mesenchymal stem cells–derived extracellular vesicles (EVs). The anti-inflammatory TGF-β (transforming growth factor-β) is selectively enriched in EVs from Lean but not from MetS pigs, but the functional impact of this endowment remains unknown. We hypothesized that Lean-EVs more effectively induce regulatory T cells in injured kidneys. Five groups of pigs (n=7 each) were studied after 16 weeks of diet-induced MetS and unilateral renal artery stenosis (RAS; MetS+RAS). Two groups of MetS+RAS were treated 4 weeks earlier with an intrarenal injection of either Lean-EVs or MetS-EVs. MetS+RAS had lower renal volume, renal blood flow, and glomerular filtration rate than MetS pigs. Compared with Lean-EVs, MetS-EVs were less effective in improving renal function and decreasing tubular injury and fibrosis in MetS+RAS. Lean-EVs upregulated TGF-β expression in stenotic kidney and increased regulatory T cells numbers more prominently. Furthermore, markedly upregulated anti-inflammatory M2 macrophages reduced proinflammatory M1 macrophages, and CD8 + T cells were detected in stenotic kidneys treated with Lean-EVs compared with MetS-EVs, and renal vein levels of interleukin-1β were reduced. In vitro, coculture of Lean-EVs with activated T cells led to greater TGF-β-dependent regulatory T cells induction than did MetS-EVs. Therefore, the beneficial effects of mesenchymal stem cells–derived EVs on injured kidneys might be partly mediated by their content of TGF-β signaling components, which permitting increased Treg preponderance. Modulating EV cargo and transforming their functionality might be useful for renal repair.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3