Cholesterol-Induced Suppression of Endothelial Kir Channels Is a Driver of Impairment of Arteriolar Flow-Induced Vasodilation in Humans

Author:

Ahn Sang Joon1,Fancher Ibra S.12ORCID,Granados Sara T.1,Do Couto Natalia F.13,Hwang Chueh-Lung3ORCID,Phillips Shane A.3,Levitan Irena1ORCID

Affiliation:

1. Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine (S.J.A., I.S.F., S.T.G., N.F.D.C., I.L.), University of Illinois at Chicago.

2. Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware (I.S.F.).

3. Department of Physical Therapy, College of Applied Health Science (N.F.D.C., C.-L.H., S.A.P.), University of Illinois at Chicago.

Abstract

Dyslipidemia-induced endothelial dysfunction is an important factor in the progression of cardiovascular disease; however, the underlying mechanisms are unclear. Our recent studies demonstrated that flow-induced vasodilation (FIV) is regulated by inwardly rectifying K + channels (Kir2.1) in resistance arteries. Furthermore, we showed that hypercholesterolemia inhibits Kir2.1-dependent vasodilation. In this study, we introduced 2 new mouse models: (1) endothelial-specific deletion of Kir2.1 to demonstrate the role of endothelial Kir2.1 in FIV and (2) cholesterol-insensitive Kir2.1 mutant to determine the Kir2.1 regulation in FIV under hypercholesterolemia. FIV was significantly reduced in endothelial-specific Kir2.1 knock-out mouse mesenteric arteries compared with control groups. In cholesterol-insensitive Kir2.1 mutant mice, Kir2.1 currents were not affected by cyclodextrin and FIV was restored in cells and arteries, respectively, with a hypercholesterolemic background. To extend our observations to humans, 16 healthy subjects were recruited with LDL (low-density lipoprotein)-cholesterol ranging from 51 to 153 mg/dL and FIV was assessed in resistance arteries isolated from gluteal adipose. Resistance arteries from participants with >100 mg/dL LDL (high-LDL) exhibited reduced FIV as compared with those participants with <100 mg/dL LDL (low-LDL). A significant negative correlation was observed between LDL cholesterol and FIV in high-LDL. Expressing dominant-negative Kir2.1 in endothelium blunted FIV in arteries from low-LDL but had no further effect on FIV in arteries from high-LDL. The Kir2.1-dependent vasodilation more negatively correlated to LDL cholesterol in high-LDL. Overexpressing wild-type Kir2.1 in endothelium fully recovered FIV in arteries from participants with high-LDL. Our data suggest that cholesterol-induced suppression of Kir2.1 is a major mechanism underlying endothelial dysfunction in hypercholesterolemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3