Affiliation:
1. From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK (R.A.L., K.B.N., A.C.M., R.M.T.); and Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (R.A.L., K.B.N., R.C.T.).
Abstract
Oxidative stress is implicated in vascular dysfunction in hypertension. Although mechanisms regulating vascular pro-oxidants are emerging, there is a paucity of information on antioxidant systems, particularly nuclear factor erythroid 2–related factor (Nrf2), a master regulator of antioxidants enzymes. We evaluated the vascular regulatory role of Nrf2 in hypertension and examined molecular mechanisms, whereby Nrf2 influences redox signaling in small arteries and vascular smooth muscle cells from Wistar Kyoto (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Cells were stimulated with angiotensin II in the absence/presence of Nrf2 activators (bardoxolone/L-sulforaphane). Increased vascular reactive oxygen species production (chemiluminescence and amplex red) was associated with reduced Nrf2 activity in arteries (18%) and vascular smooth muscle cells (48%) in SHRSP (
P
<0.05 versus WKY). Expression of antioxidant enzymes, including superoxide dismutase-1 (64%), catalase (60%), peroxiredoxin 1 (75%), and glutathione peroxidase (54%), was reduced in SHRSP. L-sulforaphane reversed these effects. Angiotensin II increased nuclear accumulation of Nrf2 in vascular smooth muscle cells from WKY (197% versus vehicle), with blunted effects in SHRSP (44% versus vehicle). These responses were associated with increased antioxidant expression (superoxide dismutase-1, 32%; catalase, 42%; thioredoxin, 71%; peroxiredoxin, 1%–90%; quinone oxidoreductase, 84%;
P
<0.05 versus vehicle) and increased activity of superoxide dismutase-1, catalase, and thioredoxin in WKY but not in SHRSP, which exhibited increased Bach1 expression. Nrf2 activators blocked angiotensin II–induced reactive oxygen species generation. Vascular function demonstrated increased contractility (
E
max
WKY 113.4±5.6 versus SHRSP 159.0±8.3) and decreased endothelial-dependent relaxation (
E
max
WKY 88.6±3.1 versus SHRSP 74.6±3.2,
P
<0.05) in SHRSP, effects corrected by L-sulforaphane. Our findings suggest that Nrf2 downregulation contributes to redox-sensitive vascular dysfunction in hypertension.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
117 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献