Levels of Renal and Extrarenal Sympathetic Drive in Angiotensin II–Induced Hypertension

Author:

Burke Sandra L.1,Evans Roger G.1,Moretti John-Luis1,Head Geoffrey A.1

Affiliation:

1. From the Neuropharmacology Laboratory (S.L.B., J.-L.M., G.A.H.), Baker Heart Research Institute, Melbourne, Australia; and the Department of Physiology (R.G.E.), Monash University, Victoria, Australia.

Abstract

We examined the contribution of the renal nerves to mean arterial pressure (MAP) during 5-week chronic infusion of angiotensin II (Ang II; 50 ng/kg per minute SC) in conscious rabbits. Basal MAP was 68±1 mm Hg, and the maximum depressor response to ganglion blockade was −20±2 mm Hg. MAP increased by 25±2 mm Hg after 1 week and remained stable over the next 4 weeks. Depressor responses to pentolinium (6 mg/kg IV) were similar to control during the first week of hypertension but thereafter became increasingly greater in Ang II–treated rabbits but not vehicle-treated rabbits. After 5 weeks, the fall in MAP was 54% greater in Ang II- than in vehicle-treated rabbits (−34±2 versus −22±2 mm Hg), but renal sympathetic nerve activity was similar in both groups. Renal denervation produced a small fall in MAP in all of the vehicle-treated rabbits after 4 days (−6±2 mm Hg; P =0.01), but there was no consistent effect in hypertensive rabbits. The depressor response to ganglion blockade was enhanced in vehicle-treated but not Ang II–treated rabbits. The finding that renal sympathetic nerve activity is not altered by Ang II hypertension nor is the hypertension altered by renal denervation suggests that renal sympathetic nerves do not contribute to the hypertension. The greater depressor effect of acute ganglion blockade in hypertensive rabbits suggests that the sympathetic nervous system exerts increased vasoconstriction in the peripheral vasculature in Ang II–induced hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3