Loss of Epidermal Growth Factor Receptor in Vascular Smooth Muscle Cells and Cardiomyocytes Causes Arterial Hypotension and Cardiac Hypertrophy

Author:

Schreier Barbara1,Rabe Sindy1,Schneider Bettina1,Bretschneider Maria1,Rupp Sebastian1,Ruhs Stefanie1,Neumann Joachim1,Rueckschloss Uwe1,Sibilia Maria1,Gotthardt Michael1,Grossmann Claudia1,Gekle Michael1

Affiliation:

1. From the Julius-Bernstein-Institute of Physiology, Medical Faculty (B.Schr., S.R., B.Schn., M.B., S.R., U.R., C.G., M.G.) and Institute of Pharmacology and Toxicology, Medical Faculty (S.R., J.N.), University of Halle-Wittenberg, Halle, Germany; Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria (M.S.); and Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (M.G.).

Abstract

The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, contributes to parainflammatory dysregulation, possibly causing cardiovascular dysfunction and remodeling. The physiological role of cardiovascular EGFR is not completely understood. To investigate the physiological importance of EGFR in vascular smooth muscle cells and cardiomyocytes, we generated a mouse model with targeted deletion of the EGFR using the SM22 (smooth muscle-specific protein 22) promoter. While the reproduction of knockout animals was not impaired, life span was significantly reduced. Systolic blood pressure was not different between the 2 genotypes—neither in tail cuff nor in intravascular measurements—whereas total peripheral vascular resistance, diastolic blood pressure, and mean blood pressure were reduced. Loss of vascular smooth muscle cell-EGFR results in a dilated vascular phenotype with minor signs of fibrosis and inflammation. Echocardiography, necropsy, and histology revealed a dramatic eccentric cardiac hypertrophy in knockout mice (2.5-fold increase in heart weight), with increased stroke volume and cardiac output as well as left ventricular wall thickness and lumen. Cardiac hypertrophy is accompanied by an increase in cardiomyocyte volume, a strong tendency to cardiac fibrosis and inflammation, as well as enhanced NADPH-oxidase 4 and hypertrophy marker expression. Thus, in cardiomyocytes, EGFR prevents excessive hypertrophic growth through its impact on reactive oxygen species balance, whereas in vascular smooth muscle cells EGFR contributes to the appropriate vascular wall architecture and vessel reactivity, thereby supporting a physiological vascular tone.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3