Affiliation:
1. From the Departments of Pharmacology and Molecular Therapeutics (E.Y., K.K., T.Y., Y.T., Y.-F.D., S.M., S.K.-M.) and Cardiovascular Medicine (H.O.), Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan.
Abstract
The role of angiotensin II and reactive oxygen species in the exacerbation of diastolic heart failure is unknown. We examined the therapeutic effect of angiotensin blockade on hypertensive diastolic heart failure, focusing on the role of xanthine oxidoreductase and reduced nicotinamide-adenine dinucleotide phosphate oxidase, major enzymes producing reactive oxygen species. Dahl salt-sensitive hypertensive rats (DS rats) with established diastolic heart failure were given vehicle, candesartan (an angiotensin II receptor subtype 1 receptor blocker), oxypurinol (a xanthine oxidoreductase inhibitor), apocynin (a reduced nicotinamide-adenine dinucleotide phosphate oxidase inhibitor), or hydralazine (a vasodilator), and their therapeutic effects on diastolic heart failure were compared. Candesartan treatment of DS rats with established diastolic heart failure reversed cardiac remodeling, improved cardiac relaxation abnormality, and prolonged survival, being accompanied by the attenuation of the increase in cardiac superoxide, reduced nicotinamide-adenine dinucleotide phosphate oxidase, and xanthine oxidoreductase activities. Thus, the beneficial effect of candesartan in DS rats appears to be mediated by the inhibition of cardiac reactive oxygen species. Cardiac xanthine oxidoreductase inhibition with oxypurinol significantly reduced cardiac superoxide, prevented the progression of cardiac remodeling, and delayed the mortality in DS rats. Apocynin, which significantly inhibited cardiac reduced nicotinamide-adenine dinucleotide phosphate oxidase activity, prevented the exacerbation of diastolic heart failure more than hydralazine. However, compared with candesartan or oxypurinol, apocynin did not improve cardiac reactive oxygen species, remodeling, and function in DS rats. In conclusion, candesartan slowed the exacerbation of hypertensive diastolic heart failure in DS rats by causing reverse cardiac remodeling. Cardiac xanthine oxidoreductase contributed to these beneficial effects of candesartan.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献