Epithelial Sodium Channel Stiffens the Vascular Endothelium In Vitro and in Liddle Mice

Author:

Jeggle Pia1,Callies Chiara1,Tarjus Antoine1,Fassot Celine1,Fels Johannes1,Oberleithner Hans1,Jaisser Frederic1,Kusche-Vihrog Kristina1

Affiliation:

1. From the Institute of Physiology II, University of Muenster, Muenster, Germany (P.J., C.C., J.F., H.O., K.K.-V.); and INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie Paris, Paris Cedex 06, France (A.T., C.F., F.J.).

Abstract

Liddle syndrome, an inherited form of hypertension, is caused by gain-of-function mutations in the epithelial Na + channel (ENaC), the principal mediator of Na + reabsorption in the kidney. Accordingly, the disease pathology was ascribed to a primary renal mechanism. Whether this is the sole responsible mechanism, however, remains uncertain as dysregulation of ENaC in other tissues may also be involved. Previous work indicates that ENaC in the vascular endothelium is crucial for the regulation of cellular mechanics and thus vascular function. The hormone aldosterone has been shown to concomitantly increase ENaC surface expression and stiffness of the cell cortex in vascular endothelial cells. The latter entails a reduced release of the vasodilator nitric oxide, which eventually leads to an increase in vascular tone and blood pressure. Using atomic force microscopy, we have found a direct correlation between ENaC surface expression and the formation of cortical stiffness in endothelial cells. Stable knockdown of αENaC in endothelial cells evoked a reduced channel surface density and a lower cortical stiffness compared with the mock control. In turn, an increased αENaC expression induced an elevated cortical stiffness. More importantly, using ex vivo preparations from a mouse model for Liddle syndrome, we show that this disorder evokes enhanced ENaC expression and increased cortical stiffness in vascular endothelial cells in situ. We conclude that ENaC in the vascular endothelium determines cellular mechanics and hence might participate in the control of vascular function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3