Noninvasive detection of rejection of transplanted hearts with indium-111-labeled lymphocytes.

Author:

Eisen H J,Eisenberg S B,Saffitz J E,Bolman R M,Sobel B E,Bergmann S R

Abstract

To determine whether cardiac transplant rejection can be detected noninvasively with indium-111 (111In)-labeled lymphocytes, we studied 11 dogs with thoracic heterotopic cardiac transplants without immunosuppression and five dogs with transplants treated with cyclosporine (10 mg/kg/day) and prednisone (1 mg/kg/day). All were evaluated sequentially with gamma scintigraphy after administration of 150 to 350 muCi of autologous 111In-lymphocytes. Technetium-99m-labeled red blood cells (1 to 3 mCi) were used for correction of radioactivity in the blood pool attributable to circulating labeled lymphocytes. Lymphocyte infiltration was quantified as the ratio of indium in the myocardium of the transplant or native heart compared with that in blood (indium excess, IE). Results were correlated with mechanical and electrical activity of allografts and with histologic findings in sequential biopsy specimens. In untreated dogs (n = 11), IE was 15.5 +/- 7.0 (SD) in transplanted hearts undergoing rejection and 0.4 +/- 1.1 in native hearts on the day before animals were killed (p less than .01). In dogs treated with cyclosporine and prednisone (n = 5), IE was minimal in allografts during the course of immunosuppression (0.8 +/- 0.4) and increased to 22.9 +/- 11.1 after immunosuppression was stopped. Scintigraphic criteria of rejection (IE greater than 2 SD above that in native hearts) correlated with results of biopsies indicative of rejection and appeared before electrophysiologic or mechanical manifestations of dysfunction. Thus infiltration of labeled lymphocytes in allografts, indicative of rejection, is detectable noninvasively by gamma scintigraphy and provides a sensitive approach potentially applicable to clinical monitoring for early detection of rejection and guidance for titration of immunosuppressive measures.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3