Effects of altered site of electrical activation on myocardial performance during inotropic stimulation.

Author:

Heyndrickx G R,Vilaine J P,Knight D R,Vatner S F

Abstract

The effects of altering the site of electrical activation on responses to isoproterenol (ISO) and treadmill exercise were examined in mongrel dogs instrumented for long-term measurement of left ventricular pressure, left ventricular dP/dt, coronary blood flow, cardiac output, left ventricular diameters, and mean arterial pressure and O2 content in the coronary sinus and aorta. During spontaneous rhythm, 0.2 micrograms/kg/min ISO increased heart rate by 90 +/- 7 beats/min, left ventricular dP/dt by 2479 +/- 301 mm Hg/sec, cardiac output by 3.5 +/- 0.9 liters/min, coronary blood flow by 30.4 +/- 3.9 ml/min, and myocardial oxygen consumption (MVO2) by 3.91 +/- 0.84 ml/min. During right atrial pacing at 193 +/- 7 beats/min, the effects of ISO were not different from the effects during spontaneous rhythm, with the exception of a lesser increase in coronary blood flow and lesser reductions in coronary resistance and left ventricular end-diastolic diameter and pressure. During right ventricular pacing at an identical rate, ISO increased left ventricular dP/dt (1140 +/- 158 mm Hg/sec) and cardiac output (2.2 +/- 0.5 liters/min) significantly less (p less than .025) than during either sinus rhythm or right atrial pacing, while MVO2 rose to a higher value. During right ventricular pacing the changes in mean arterial pressure and left ventricular end-diastolic diameters with ISO were not significantly different from those during right atrial pacing. Treadmill exercise induced significantly smaller (p less than .025) increases in left ventricular dP/dt during right ventricular pacing as compared with during either right atrial pacing or sinus rhythm, while MVO2 rose to a higher value.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3