Glutathione redox pathway and reperfusion injury. Effect of N-acetylcysteine on infarct size and ventricular function.

Author:

Forman M B1,Puett D W1,Cates C U1,McCroskey D E1,Beckman J K1,Greene H L1,Virmani R1

Affiliation:

1. Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.

Abstract

Glutathione peroxidase is an important enzyme in the degradative cascade of reactive oxygen free radicals. N-Acetylcysteine (NAC) is a low molecular weight compound that has been used clinically to replenish glutathione. To assess the role of the glutathione redox pathway on reperfusion injury, 23 animals underwent 90 minutes of proximal left anterior descending coronary artery occlusion followed by 24 hours of reperfusion with the administration of NAC (n = 11) or saline (n = 12) beginning 30 minutes into occlusion and continuing for 3 hours after reperfusion. Regional ventricular function was measured with contrast ventriculography, and regional myocardial blood flow was determined with microspheres. At 24 hours, the area at risk was defined in vivo with Monastral Blue, and the area of necrosis was defined by incubation in triphenyltetrazolium. Biopsies were taken from the ischemic and nonischemic zones to determine levels of total glutathione, superoxide dismutase and glutathione peroxidase activity, and reactivity to thiobarbituric acid, an index of lipid peroxidation. The rate-pressure product and myocardial blood flow were similar in the two groups throughout the study. No significant differences were noted in infarct size expressed as a percentage of the area at risk (28.6 +/- 5.3% vs. 36.6 +/- 6.0%) and of the total left ventricle (14.4 +/- 3.2% vs. 16.5 +/- 3.1%), and no differences were noted between the two groups on examination of the ischemic subendocardium by light and electron microscopy. Both groups exhibited similar degrees of dyskinesis during occlusion; however, treated animals showed significant improvement in regional radial shortening at 3 hours (3.4 +/- 2.4% vs. -2.4 +/- 2.1%, p less than 0.02) and 24 hours (9.2 +/- 2.2% vs. -2.5 +/- 6.3%, p less than 0.001) after reperfusion. No differences were present in total glutathione, thiobarbituric acid reactivity, or superoxide dismutase and glutathione peroxidase activity in the ischemic zones of the two groups. This study suggests that N-acetylcysteine treatment before reperfusion may reduce myocardial stunning but does not limit myocyte death after reperfusion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference68 articles.

1. An approach to free radicals in medicine and biology;Del Maestro RF;Acta Physiol Scand [Suppli,1980

2. DNA strand scission by enzymically generated oxygen radicals

3. Protein degradation following treatment with hydrogen peroxide;Fligiel SEG;Am J Pathol,1984

4. Oxygen, ischemia and inflammation;Weiss SJ;Acta Physiol Scand [Suppli,1986

5. Oxygen-Derived Free Radicals in Postischemic Tissue Injury

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3