Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers.

Author:

Chialvo D R1,Michaels D C1,Jalife J1

Affiliation:

1. Department of Pharmacology, SUNY Health Science Center, Syracuse 13210.

Abstract

Supernormality, which can be defined as greater than normal excitability during or immediately after action potential repolarization, has been observed in a variety of cardiac preparations. However, as yet, no description of the dynamics of tissue response to repetitive stimulation in the presence of supernormal or relatively supernormal excitability has appeared. Isolated sheep cardiac Purkinje fibers (2-5 mm in length) were superfused with Tyrode's solution and stimulated with depolarizing current pulses through a suction pipette. Recovery of excitability, restitution of the action potential duration, and response patterns were measured in each fiber for a wide range of current amplitudes and stimulation frequencies. When the potassium chloride concentration of the Tyrode's solution was decreased from 7 to 4 mM, the excitability recovery function consistently changed from monophasic ("normal") to triphasic ("supernormal'). During repetitive stimulation at increasing rates, normal preparations responded only with gradual changes in the activation ratio, expressed as periodic phase-locked responses (i.e., Wenckebach-like patterns, etc.). Supernormal preparations showed a nonmonotonic change in the activation ratio, as well as complex aperiodic response patterns. Numerical results from an analytical model gave a quantitative basis for the relation between nonmonotonicity in the excitability function and the development of complex rhythms in cardiac Purkinje fibers. Both our experimental and theoretical results indicate that the presence of supernormality and the slope of the action potential duration restitution curve at short diastolic intervals are responsible for the development of chaotic dynamics. Moreover, our results give an accurate description of the supernormality phenomenon, predict the behavior expected under such conditions, and provide insight about the role of membrane recovery in determining regular and irregular frequency-dependent rhythm and conduction disturbances.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference30 articles.

1. Mechanism of the Wenckebach-Luciani cycles;Rosenblueth A;Am J Physiol,1958

2. On cardiac arrythmias: AV conduction block

3. Non-linear dynamics of cardiac excitation and impulse propagation

4. Berge P Pomeau Y Vidal C: Order Within Chaos: Towards a DeterministicApproach to Turbulence. New York John Wiley & Sons Inc 1984 pp 1-329

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3