Digestion of cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles with calpain II. Effects on the Ca2+ release channel.

Author:

Rardon D P1,Cefali D C1,Mitchell R D1,Seiler S M1,Hathaway D R1,Jones L R1

Affiliation:

1. Krannert Institute of Cardiology, Indiana University, School of Medicine, Indianapolis 46202.

Abstract

The Ca2+ release channel and ryanodine receptor are activities copurifying with the 400,000-450,000 Da high molecular weight protein of cardiac and skeletal junctional sarcoplasmic reticulum. Calpain II, an endogenous cytosolic protease, was used to selectively degrade the high molecular weight protein in cardiac and skeletal muscle sarcoplasmic reticulum vesicles, and its effects on the activity of the Ca2+ release channel and [3H]ryanodine binding sites were analyzed. Degradation of the high molecular weight protein was associated with appearance of 315,000 and 150,000 Da proteolytic fragments and with a change in the ultrastructure of the "feet," extravesicular projections that protrude from the junctional sarcoplasmic reticulum membrane. The maximal number of [3H]ryanodine binding sites and the affinities of the sites for ryanodine were not remarkably affected by calpain II. Ca2+ release channels recorded from nondegraded cardiac and skeletal membrane vesicle preparations had slope conductances of 85 and 110 pS, respectively, measured with 1 microM cis-Ca2+ and 50 mM trans-Ba2+. Proteolysis did not alter the unitary channel conductances but did increase the percentage of channel open times from 36% to more than 90%. After proteolysis, channel opening remained dependent on micromolar cis-Ca2+, and high concentrations of ryanodine (300 microM) still blocked the channel. Our results suggest that proteolysis of the Ca2+ release channel with calpain II selectively impairs its inactivation, leaving its unitary conductance and the requirement for micromolar Ca2+ intact.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3