Visualization and quantification of transmural concentration profiles of macromolecules across the arterial wall.

Author:

Penn M S1,Koelle M R1,Schwartz S M1,Chisolm G M1

Affiliation:

1. Department of Vascular Cell Biology and Atherosclerosis Research, Cleveland Clinic Foundation, Ohio 44195.

Abstract

Transport parameters that describe a macromolecule entering the arterial wall from plasma can be obtained from concentration profiles of the labeled macromolecule entering the tissue. A new technique has been developed for measuring such concentration profiles, which offers spatial resolution superior to methods that measure profiles of radiolabeled macromolecules by serially sectioning tissue in planes parallel to the endothelium. In addition, this new method preserves cellular organization and tissue structure and permits measurement of concentration profiles underlying focal endothelial injuries or vascular lesions. The technique quantifies the concentration of a protein by measuring associated peroxidase activity. Although the present study was performed using horseradish peroxidase (HRP), the same principles can be applied to other macromolecules linked to HRP or microperoxidase. The colored reaction product of HRP was detected in transverse aortic sections using an image processing system. In the present study, profiles obtained by this new method were validated by comparison with HRP concentration profiles in rat aortas obtained by a serial slicing technique using radiolabeled HRP. We used the technique to measure high-resolution HRP concentration profiles in the intima and media of normal animals. These concentration profiles suggest that the internal elastic lamina acts as a major barrier to transport of macromolecules across the wall of the normal rat aorta. The new method should allow concentration profiles for macromolecules to be quantified in tissue surrounding vessels in the microcirculation, within the thickened intima of large vessels, and across coronary artery walls.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3