Influence of lung volume on sympathetic nerve discharge in normal humans.

Author:

Seals D R1,Suwarno N O1,Dempsey J A1

Affiliation:

1. Department of Exercise and Sport Sciences, Arizona Health Sciences Center, University of Arizona, Tucson 85721.

Abstract

The purpose of this study was to determine the influence of tidal volume, breathing pattern, and beginning lung volume on the modulation of efferent, muscle sympathetic nerve activity (MSNA) in humans. In seven supine, healthy subjects, we measured MSNA (microneurography of the right peroneal nerve) and beat to beat arterial blood pressure during 1) low-frequency breathing (fb = 12 breaths/min) at tidal volumes (VT) of 30% (control), 50%, and 70% of inspiratory capacity and with inspiratory time-to-total breath time ratios (TI/TTOT) of 0.3-0.5 (control), less than 0.3, and greater than 0.5; and 2) simulated exercise hyperpnea (fb = 40 breaths/min; VT = 60-70% inspiratory capacity; minute ventilation, approximately 90 1). To optimize our ability to discern modulatory effects, breathing was performed during three conditions of heightened MSNA: nonhypotensive (less than 20 mm Hg) lower-body negative pressure, isometric handgrip exercise, and posthandgrip vascular occlusion (ischemia). PETCO2 was maintained at normal levels by adjusting the FICO2. Within-breath modulation of MSNA was observed during control tidal breathing with approximately 65% of the burst frequency occurring during the expiratory phase. Deep, low-frequency breathing potentiated this modulatory influence (p less than 0.05 versus control) and produced near-complete sympathoinhibition from onset-mid inspiration to early-mid expiration. Increasing (slow inspiration) and decreasing (fast inspiration) TI/TTOT shifted the onset of sympathoinhibition occurring later (greater change in volume) and earlier (less change in volume) during inspiration, respectively. In two subjects who performed deep breathing from an elevated beginning lung volume, the sympathoinhibition was observed earlier in the inspiratory period and with less change in volume compared with control. These within-breath modulatory effects did not appear to be due solely to changes in arterial pressure. Sustained low- or high ("exerciselike")-frequency deep breathing did not alter total minute MSNA compared with control breathing. These results demonstrate that the depth and pattern of breathing, and possibly the starting lung volume, exert marked influences on the within-breath modulation of MSNA in humans. Our findings also suggest that these modulatory effects may be mediated, at least in part, by pulmonary stretch reflexes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3